Министерство образования и науки Российской Федерации Национальный исследовательский Томский государственный университет Физико-технический факультет

Л.Л. Миньков, К.М. Моисеева

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧ ГИДРОДИНАМИКИ С ПОМОЩЬЮ ВЫЧИСЛИТЕЛЬНОГО ПАКЕТА ANSYS FLUENT

Учебное пособие

Томск – 2017

ББК 22.193+22.253 УДК 532.5:519.63 М57

Миньков Л.Л., Моисеева К.М. Численное решение задач M57 гидродинамики с помощью вычислительного пакета Ansys Fluent : учеб. пособие. – Томск : STT, 2017. – 122 с.

ISBN 978-5-93629-594-2

В учебном пособии представлены приемы решения задач гидродинамики с помощью вычислительного пакета Ansys Fluent. Рассмотрено решение трех задач: ламинарное течение вязкой несжимаемой жидкости в трубе постоянного сечения, турбулентное течение вязкой несжимаемой жидкости в трубе постоянного сечения и образование косого скачка уплотнения при обтекании клина сжимаемым газом. Учебное пособие составлено для магистрантов, изучающих курс «Вычислительная гидродинамика» по программе подготовки магистров по направлениям 16.04.01 -Техническая 24.04.03 _ Баллистика физика. И гидроаэродинамика на физико-техническом факультете ТГУ.

Пособие будет полезно для аспирантов, преподавателей и слушателей ФПК.

ББК 22.193+22.253 УДК 532.5:519.63

Рецензенты:

Биматов В.И. –	докт. физмат. наук, заведующий кафедрой динамики
	полета Томского государственного университета;
	1 1 1

Борисов Б.В. – докт. физ.-мат. наук, профессор кафедры теоретической и промышленной теплотехники Томского политехнического университета.

ISBN 978-5-93629-594-2

- © Л.Л. Миньков, К.М. Моисеева, 2017
- © Томский государственный университет, 2017

СОДЕРЖАНИЕ

ЕДЕ	НИЕ	5			
ЛАМ	ИИНАРНОЕ ТЕЧЕНИЕ ВЯЗКОЙ НЕСЖИМАЕМОЙ				
ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ					
1.1.	Описание задачи	6			
1.2.	Предварительные замечания	6			
1.3.	Создание проекта в ANSYS Workbench	7			
1.4.	Создание эскиза в Design Modeler	.11			
	1.4.1. Создание поверхности	. 16			
	1.4.2. Построение сетки	.17			
	1.4.3. Задание узлов сетки на границе области	. 21			
	1.4.4. Присвоение имен границам области	. 24			
	1.4.5. Сохранение, выход, обновление	. 24			
1.5.	Запуск ANSYS FLUENT	. 25			
	1.5.1. Проверка и изображение разностной сетки	. 27			
	1.5.2. Внесение данных в решатель	. 30			
	1.5.3. Задание свойств жидкости	. 32			
	1.5.4. Задание граничных условий	. 33			
	1.5.5. Выбор разностной схемы	. 36			
	1.5.6. Задание начальных условий	. 37			
	1.5.7. Настройка критерия сходимости	. 38			
	1.5.8. Расчет коэффициента трения	. 40			
	1.5.9. Выполнение расчетов	. 45			
1.6.	Обработка результатов расчета с помощью				
	средств FLUENTа	. 47			
	1.6.1. Построение поля векторов скоростей	. 47			
	1.6.2. Построение изолиний модуля скорости	. 50			
	1.6.3. Построение профиля скорости на выходе из канала	. 54			
	1.6.4. Построение изменения давления вдоль оси канала	. 56			
	1.6.5. Контроль и проверка решения	. 58			
1.7.	Измельчение сетки	. 66			
1.8.	Просмотр результатов	. 67			
1.9.	Задание для самостоятельной работы	. 67			
	ЕДЕ ЛАМ ЖИ 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7. 1.8. 1.9.	 ЕДЕНИЕ			

2.	ТУР	БУЛЕНТНОЕ ТЕЧЕНИЕ ВЯЗКОЙ НЕСЖИМАЕМОЙ	
	ЖИ	ДКОСТИ В КРУГЛОЙ ТРУБЕ	70
	2.1.	Описание задачи	70
	2.2.	Предварительные замечания	70
	2.3.	Создание проекта в ANSYS Workbench	71
	2.4.	Построение сетки	75
		2.4.1. Задание узлов сетки на границе области	76
		2.4.2. Присвоение имен границам области	77
		2.4.3. Сохранение, выход, обновление	78
	2.5.	Запуск ANSYS FLUENT	79
		2.5.1. Внесение данных в решатель	79
		2.5.2. Задание свойств жидкости	80
		2.5.3. Задание граничных условий	81
		2.5.4. Выбор разностной схемы	82
		2.5.5. Настройка критерия сходимости	83
		2.5.6. Задание начальных условий	83
		2.5.7. Сохранение проекта	84
		2.5.8. Выполнение расчетов	84
	2.6.	Обработка результатов расчета	85
		2.6.1. Расчет местного коэффициента трения	85
		2.6.2. Контроль и проверка решения	88
	2.7.	Задание для самостоятельной работы	90
3.	ЗАЛ	АЧА О КОСОМ СКАЧКЕ УПЛОТНЕНИЯ	93
	3.1.	Описание задачи	93
	3.2.	Создание проекта в ANSYS Workbench	94
		3.2.1. Создание эскиза	97
		3.2.2. Создание поверхности	101
		3.2.3. Построение сетки	102
		3.2.4. Задание узлов сетки на границах	105
		3.2.5. Присвоение имен границам области	108
		3.2.6. Сохранение, выход, обновление	109
	3.3.	Запуск ANSYS FLUENT	109
		3.3.1. Установки Problem Setup	110
		3.2.2. Установки Solution	112
	3.4.	Результаты расчета	114
	3.5.	Задание для самостоятельной работы	119
ЛV	ITEP.	АТУРА	120

введение

Современный инженер, занимающийся гидродинамикой, обязан обладать навыками работы с современными программными комплексами, позволяющими выполнять численное моделирование сложных гидродинамических процессов. К настоящему времени разработано большое количество таких CFD комплексов, как STAR-CD, FlowVision, N3S, CFX, Fluent, FemLab, FEATFLOW и др. В последнее время широкое распространение получили программные комплексы от компании Ansys, успешно продвигающейся на рынке специализированных программных продуктов.

Целью данного учебного пособия является описание приемов работы с основными элементами программного комплекса ANSYS, такими как ANSYS Workbench, DesignModelier, Meshing и Fluent, на примере решения трех задач гидрогазодинамики: задачи о ламинарном течении вязкой несжимаемой жидкости в трубе постоянного сечения, задачи о турбулентном течении вязкой несжимаемой жидкости в трубе постоянного сечения и задачи о косой ударной волне, образующейся при натекании на клин идеального сжимаемого газа. Следует отметить, что данное пособие не претендует на полноту описания всех возможных приемов и средств, заложенных в пакет Ansys, для решения задач гидродинамики. В пособии приводится описание работы в Ansys версии 14.0, хотя к моменту написания пособия уже имеется версия 18, отличающаяся интерфейсом от рассматриваемой. Тем не менее, навыки работы с интерфейсом ANSYS версии 14.0 позволяют без особого труда работать с более поздними версиями ANSYS.

Пособие направлено на формирование общепрофессиональных и профессиональных компетенций в области численного моделирования гидродинамических процессов у магистрантов, обучающихся по направлениям 16.04.01 – Техническая физика и 24.04.03 – Баллистика и гидроаэродинамика.

Пособие будет также полезно аспирантам и слушателям курсов повышения квалификации, изучающих вычислительную гидродинамику.

1. ЛАМИНАРНОЕ ТЕЧЕНИЕ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ

1.1. Описание задачи

Рассмотрим задачу о ламинарном течении жидкости в круглой трубе постоянного сечения, рис.1.1. Диаметр трубы D = 0.2 м, длина трубы L = 8 м. Скорость жидкости на входе в трубу $U_z = 1$ м/сек является постоянной по всему входному сечению. Жидкость вытекает в окружающую среду, давление которой равно 1 атм. Примем плотность среды $\rho = 1$ кг/м³, а коэффициент вязкости $\mu = 2 \times 10^{-3}$ Па·с. Число Рейнольдса, построенное на основе диаметра трубы, равно

$$\mathrm{Re} = \frac{\rho U_z D}{\mu} = 100$$

Решим эту задачу, используя FLUENT с помощью ANSYS Workbench. Построим поля скорости и давления внутри трубы, и проверим полученные результаты.

1.2. Предварительные замечания

Мы предполагаем, что вязкий пограничный слой нарастает вдоль трубы от входного участка. В конечном итоге, он вырастает настолько, что полностью заполняет трубу (при условии, что труба достаточно длинная). Когда это происходит, поток становится полностью развитым, и профиль скорости в осевом направлении, *x* не изменяется (см. рис. 1.2). Из курса гидромеханики известно, что в полностью развитой области течения существует аналитическое решение основных уравнений гидромеханики. Мы будем сравнивать численные результаты в полностью развитой области течения с соответствующими аналитическими решениями.

Какое решение ожидается для осевой скорости и коэффициента трения в полностью развитой области течения на основе аналитического решения? Какое получается численное решение для профиля скорости?

Мы создадим геометрию и сетку в ANSYS 14.0, которая является препроцессором для FLUENT, а затем считаем сетку во FLUENT и проведем решение задачи.

1.3. Создание проекта в ANSYS Workbench

- Создаем папку *pipe*, в которой будут храниться все файлы, создаваемые во время работы.
- Запускаем ANSYS Workbench:

Start> All Programs> ANSYS 14.0> Workbench 14.0

На рис. 1.3 показано окно Workbench. В левой стороне окна Workbench будет находиться панель инструментов, заполненная системами для решения различных физических задач. Посредине будет находиться пустое рабочее место, где можно будет организовать свой проект. В нижней правой части окна можно увидеть сообщения от ANSYS.

3) Для создания проекта щелкните левой кнопкой мыши на Fluid Flow (FLUENT) в окне Analysis Systems и, удерживая ее, перетащи-

те значок в пустое пространство окна Project Schematic. После этого окно Workbench должно выглядеть так, как показано на рис. 1.4.

Рис. 1.3

- 4) Сохраните проект под именем Laminar Pipe.
- 5) В окне Project Schematic (окна Workbench) кликните правой кнопкой мышки на Geometry и выберите Properties, как показано на рис. 1.5. В правой части окна Workbench появится окно Property of Schematic.
- 6) В окне Property of Schematic, рис. 1.6, в разделе Advance Geometry Options измените значение Analysis Туре на 2D. Это означает, что далее будет выполняться построение двумерной области.
- 7) В окне Project Schematic дважды кликните на Geometry чтобы начать подготовку построения геометрической области. При этом произойдет запуск программы ANSYS Design Modeler. Вам будет предложено выбрать желаемую единицу измерения длины, рис. 1.7. Выберите метры и нажмите ОК.

Рис. 1.4

Рис. 1.5

Proper	operties of Schematic A2: Geometry					
	A	В				
1	Property	Value				
2	General					
3	Component ID	Geometry				
4	Directory Name	FFF				
5	Geometry Source					
6	Geometry File Name					
7	 Basic Geometry Options 					
8	Solid Bodies					
9	Surface Bodies					
10	Line Bodies					
11	Parameters					
12	Parameter Key	DS				
13	Attributes					
14	Named Selections					
15	Material Properties					
16	 Advanced Geometry Options 					
17	Analysis Type	2D 🔹				
18	Use Associativity					
19	Import Coordinate Systems					
20	Import Work Points					
21	Reader Mode Saves Updated File					
22	Import Using Instances					
23	Smart CAD Update					
24	Enclosure and Symmetry Processing					
25	Decompose Disjoint Faces					
26	Mixed Import Resolution	None				

Рис. 1.6

ANSYS Workbench	X		
Select desired length	unit:		
 Meter 	○ Foot		
 Centimeter 	O Inch		
 Millimeter 			
 Micrometer 			
 Always use project unit Always use selected unit Enable large model support 			
ОК			

Рис. 1.7

1.4. Создание эскиза в Design Modeler

- 1) Открывшееся окно программы Design Modeler имеет вид, рис. 1.8.
- В панели Graphics в нижнем правом углу кликните левой кнопкой мыши по оси +Z. После этого плоскость XY совпадет с плоскостью экрана. (Ось +Z будет смотреть на вас), рис. 1.9.
- 3) Чтобы приблизить или отдалить изображение на панели Graphics, следует кликнуть левой кнопкой мыши по панели и, вращая колесико мышки, можно добиться желаемого результата. Если возникает необходимость переместить изображение влево, вправо, вверх, вниз, то следует кликнуть правой кнопкой мыши и в контекстном меню выполнить следующую последовательность дей-

ствий: Cursor Mode→Pan. После этого курсор примет форму ♥. Кликнув по панели Graphics левой кнопкой мыши и удерживая ее, можно перемещать изображение в любом направлении.

Рис. 1.8

Рис. 1.9

4) Эскиз будем создавать в плоскости ХҮ. Для этого на панели Tree Outline кликните по XYPlane (рис. 1.9). В левом нижнем углу панели Tree Outline выберите закладку Sketching. Вместо панели Tree Outline появится панель Sketching Toolboxes – панель инструментальных средств для построения эскиза, рис. 1.10. По умолчанию открывается набор инструментов Draw.

Sketching Toolboxes	÷.					
Draw	▲			Draw		
N Line				Modify		
6 Tangent Line				Dimensions		
6 Line by 2 Tangents				Constraints		
A Polyline				Settings		
(•) Polygon				Settings	-	
Rectangle			Grid	Show in 2D:	J✔ Snap	
Rectangle by 3 Points			🖩 🛲 Major Grid	l Spacing		
€ Oval			I Minor-Ster	ps per Major		
© Circle			I Snaps per	Minor		
⊈Circle by 3 Tangents						
Arc by Tangent						
Arc by 3 Points						
Arc by Center						
@Ellipse						
Spline						
* Construction Point						
♦ Construction Point at Intersection						
Modify	-					
Dimensions						
Constraints						
Settings		J				
Sketching Modeling			Sketching Mo	odeling		
Рис. 1.10			P	ис. 1.11		

5) Перед построением области покажем координатную сетку. Для этого на панели Sketching Toolboxes кликните по табулятору Settings, находящемуся внизу панели, затем – по инструменту Grid и напротив Show in 2D установите галочку, рис. 1.11. После этого на панели Graphics будет показана координатная сетка, расстояние между координатными линиями по умолчанию равно 5 м. 6) На панели Sketching Toolboxes выберите Rectangle. На панели Graphics создайте прямоугольник, кликая левой кнопкой мыши в начале координат и, затем, где-нибудь в первом квадранте плоскости ХҮ. Если курсор вести вдоль одной из осей, то рядом с курсором появляется буква С, если курсор поместить в начало координат, то рядом с ним появляется буква Р. Приблизите рисунок, вращая колесико мышки, и сдвиньте его влево, рис. 1.12.

🔞 A: Fluid Flow (FLUENT) - DesignModeler
File Create Concept Tools View Help
🛛 🖓 🔚 🛃 🕼 🗍 👽 Undo 📿 Redo 🗍 Select: *D ₂ 🖏 🖌 🖹 💽 🐚 🖓 🗸
Ⅲ - Ⅲ -
XYPlane ▼ ★ Sketch1 ▼ 20
Generate Share Topology Parameters
🛛 📴 Extrude 🚓 Revolve 🐁 Sweep 🚯 Skin/Loft 🔄 📑 Thin/Surface 🗞 Blend 👻 🔦 Chamfer 🛷 Point
Sketching Toolboxes 4 Graphics 4
6 Tangent Line 14.0
6 Line by 2 langents
TRectangle Auto-Fillet:
Rectangle by 3 Points
Modify v
Dimensions
Constraints
Settings
Sketching Modeling
Details View 4
□ Details of Sketch1 ▲ 0.000 3.000 (m) 4 → 7
Sketch Ske 1.500
Sketch Visibility Sh
Show Constraints? No v Model View Print Preview
Rectangle Click, or Press and Hold, for first corner of rectangle No Selection Meter -0.: 3

Рис. 1.12

- 7) Нанесем размеры на прямоугольник. На панели Sketching Toolboxes выбираем табулятор Dimensions. На панели Graphics подводя курсор к верхней стороне прямоугольника, нажимая и удерживая левую кнопку мыши отводим курсор вверх. При этом появятся линии разметки. Такие же действия проделываем с левой стороной прямоугольника, только курсор отводим влево, рис. 1.13.
- На панели Details View, которая находится под панелью Sketching Toolboxes, в группе Dimensions:2 устанавливаем H1=8, a V2=0.1, рис. 1.14.

A: Fluid Flow (FLUENT) - Des	signModeler						
File Create Concept Tools View Help							
🖉 🚽 📾 🛛 ĐUndo @ Redo 🛛 Select: 🏗 💱 🔭 💽 💽 💽 🥪							
	13- 1x- # #] \$ ‡ @ €	Q Q Q 💥 🛛	* • • 12			
J XYPlane → 🛧 Ske	tch1 🔻 🎘	,					
📔 🦸 Generate 🛛 🖤 Share Topo	logy 译및 Parameters						
🛛 🖪 Extrude 🋭 角 Revolve 🐁	Sweep 🚯 Skin/Loft	Thin/Surface 💊	Blend 🔻 🦴 Chamfer 🕠	🖗 Point			
Sketching Toolboxes 4	Graphics			đ			
Draw				NGVQ			
Modify			<u> </u>	UCDID			
Dimensions 🔺				14.0			
General		H1		e-			
Horizontal							
1 Vertical	·····						
C Deating	√2						
Angle							
Constraints 💌							
Settings							
Sketching Modeling				Y			
Details View 4				t			
Details of Sketch1 ^		0.000	<u> </u>	ĕ → ^			
Sketch Ske		1.5	00				
Sketch Visibility Sh							
Show Constraints? No 👻	Model View Print Prev	iew					
🥝 General Select point or	2D Edge for dimension of	r use RMB for option No	Selection	Meter 0 0			

Рис. 1.13

D					
Ξ	Details of Sketch2				
	Sketch	Sketch2			
	Sketch Visibility	Show Sketch			
	Show Constraints?	No			
Ξ	Dimensions: 2				
	🗆 H1	8 m			
	🗆 V2	0.1 m			
Ξ	Edges: 4				
	Line	Ln19			
	Line	Ln20			
	Line	Ln21			
	Line	Ln22			

Рис. 1.14

1.4.1. Создание поверхности

- 1) Для создания поверхности выбираем в меню Concept, а затем Surface From Sketches, как показано на рис. 1.15.
- 2)

Рис. 1.15

- 3) На панели Tree Outline (закладка Modeling) кликните по Sketch1.
- На панели Details View, выберите Sketch1 как Base Objects и затем напротив Thickness (>=0) выберите толщину 0.1m и кликните Ар-

ply. Окончательно кликните Generate, чтобы сгенерировать поверхность, рис. 1.16.

5) На этом можно закрыть Design Modeler и вернуться в Workbench Project Schematic для построения разностной сетки.

Рис. 1.16

1.4.2. Построение сетки

Сетка будет состоять из 500 элементов, в продольном направлении выбираем 100 элементов, а в поперечном 5 элементов.

- 1) В Workbench дважды кликаем по Mesh. При этом запускается программа Meshing, рис. 1.17.
- Сетку можно создать двумя способами: а) первый кликнуть правой кнопкой мыши по Mesh в панели Outline и в контекстном

меню выбрать Generate Mesh, рис. 1.18; б) второй – кликнуть в строке инструментов, находящейся под главным меню на Mesh, а затем на Generate Mesh, рис. 1.19.

Рис. 1.17

Рис. 1.18

Рис. 1.19

- 3) Результат будет выглядеть следующим:
- 4) Далее применяют стиль Mapped Face Meshing. Чтобы включить этот стиль выполняют последовательность Mesh Control→ Mapped Face Meshing, рис. 1.20.
- 5) Затем кликают по геометрической области, после чего она окрашивается в зеленый цвет: Если этого не происходит, то следует кликнуть по фильтру Face , находящейся на панели инструментов. После этого кликают Apply на панели Details of "Mapped Face Meshing", рис. 1.21, после чего панель принимает вид, рис. 1.22, а геометрическая область окрашивается в фиолетовый цвет и принимает вид, рис. 1.23.

🗃 A : Fluid Flow (FLUENT) - Mes	shing [ANSYS ICEM CFD]
File Edit View Units Tools	Help]] ∮Generate Mesh 🗇 🔤
토 Show Vertices 🗳 Wirefram	ne 🛛 🖩 Edge Coloring 👻 🔏 👻 🏒 🗸
Mesh 💈 Update 🛛 🌚 Mesh 🔻	Mesh Control - Ill Metric Grap
Outline	1 Method
🔋 Project	🐁 Mesh Group
 E→	 Sizing Contact Sizing Refinement Mapped Face Meshing Match Control Pinch Inflation Sharp Angle Gap Tool

Рис. 1.20

D	Details of "Mapped Face Meshing" - Mapped Face Meshing				
-	Scope				
	Scoping Method	Geometry Selection			
		Apply	Cancel		
-	Definition				
	Suppressed	No			
	Method	Quadrilaterals			
	Radial Number of Divisions	Default			
	Constrain Boundary	No			

Рис. 1.21

-	Scope			
	Scoping Method	Geometry Selection		
	Geometry	1 Face		
-	Definition			
	Suppressed	No	_	
	Method	Quadrilaterals		
	Constrain Boundary	No	_	
-	Advanced			
	Specified Sides	No Selection	_	
	Specified Corners	No Selection		
	Specified Ends	No Selection		

Рис. 1.22

Рис. 1.23.

1.4.3. Задание узлов сетки на границе области

Желаемая сетка имеет заданное число разбиений вдоль радиального и осевого направлений. Для задания определенного числа разбиений следует использовать Edge Sizing. Сначала зададим число разбиений вдоль осевого направления. Для этого кликаем Mesh Control > Sizing как показано ниже, рис. 1.24. Панель Details of "Sizing" принимает вид, рис. 1. 25.

Рис. 1.24

	Scope				
	Scoping Method	Geometry Selection			
		Apply	Cancel		
	Definition				
	Suppressed	No			
	Туре	Element Size			
Element Size I Behavior S		Default			
		Soft			
	Curvature Normal Angle	Default			
	Growth Rate	Default			

Рис. 1.25

- 2) Сначала кликаем по фильтру Edge , который находится в панели инструментов под строкой меню, (доступ к этому фильтру можно получить и через контекстное меню в строке Cursor Mode). Затем подвдим курсор к нижней границе прямоугольника, (она при этом окрасится в зелены йцвет), нажимаем левую кнопку мыши, и не опуская ее переводим курсор к верхней границе прямоугольника. После этой процедуры обе границы должны быть окрашены в зеленый цвет. После этого кликаем Apply на панели Details of "Sizing", рис. 1.25.
- На панели Details of "Sizing" в строке Туре выбираем Number of Divisions, рис. 1.26 и устанавливаем значение 100, рис. 1.27.

Details of "Edge Sizing" - Sizing				
- Scope				
	Scoping Method	Geometry Selection		
	Geometry	2 Edges		
Ξ	Definition			
	Suppressed	No		
		Element Size		
	Element Size	Element Size		
	Behavior	Number of Divisions		
	Curvature Normal Angle	Sphere of Influence		
	Growth Rate	Default		
	Bias Type	No Bias		

Рис. 1.26

D	Details of "Edge Sizing" - Sizing *					
-	Scope					٦
	Scoping Method	Geom	etry Selection	n		
	Geometry	2 Edg	es			٦
-	Definition					
	Suppressed	No				٦
	Туре	Numb	er of Divisior	ns		
	Number of Divisions	100	4		•	
	Behavior	Soft				
	Curvature Normal Angle	Defau	lt			٦
	Growth Rate	Defau	lt			
	Bias Type	No Bia	as			

Рис. 1.27

- Проделываем аналогичную процедуру с п.1 по п.3 для левой и правой границы, с той лишь разницей, что в разделе Number of Divisions устанавливаем значение 5.
- Поле этого в строке меню кликаем Generate Mesh. После всех выполненных операций окно программы Meshing будет выглядеть следующим образом:

Рис. 1.28

6) В разделе статистика панели Details of "Mesh" (предварительно кликнув на Mesh панели Outline) можно видеть, что число элементов получилось не равное 500. Программа автоматически построила сетку, опираясь на минимальный размер шага вдоль радиального направления. Чтобы получить ровно 500 элементов следует в разделе Behavior панелей Details of "Edge Sizing" и Details of "Edge Sizing 2" сменить значение Soft на значение Hard. После чего выполнить Generate Mesh.

1.4.4. Присвоение имен границам области

Левую границу области назовем Inlet, правую – Outlet, нижнюю – Axis, верхнюю Wall. Эти имена пригодятся на последующих шагах при построении модели с помощью программы Fluent.

- Выполнить клик правой кнопкой мыши по свободному полю, где нарисована область с построенной сеткой. Из строки Cursor Mode выбрать фильтр Edge . Подвести курсор к левой границе, когда она окрасится в зеленый цвет, выполнить левый клик мышкой, после этого выполнить правый клик мышкой. В появившемся контекстном меню выбрать Create Named Selection, рис. 1.29.
- Появится окно Selection Name, рис. 1.30, в которое следует ввести Inlet. Нажать ОК. Подобную операцию проделать со всеми границами, вводя соответствующие имена.

Insert C - T-		
GO TO	-	Selection Name
Clear Generated Data On Selected Bodies		
Parts	•	Enter a name for the selection
P Hide Body		Inlet
Suppress Body		 Apply selected geometry
Isometric View		 Apply geometry items of same
ti‡≎ Set		□ Size
Restore Default		🗌 Туре
		Location X
Cursor Mode		Location Y
view 纲 Look At		Location Z
* Create Coordinate System		
Create Named Selection		OK Cancel
NG Select All		

Рис. 1.29

1.4.5. Сохранение, выход, обновление

- 1) Сохраните проект. File→Save project
- 2) Закройте окно Meshing. File→ Close Meshing.

 Перейдите в окно Workbench и обновите проект, нажав на кнопку Update Project, *Update Project*, которая находится под строкой меню.

1.5. Запуск ANSYS FLUENT

Схема вашего проекта (Project Schematic) в Workbench должна иметь вид примерно такой же, как показано на рис. 1.31. При этом напротив Geometry и Mesh должны стоять галочки.

- Чтобы считать геометрию и сетку во FLUENT кликните правой кнопкой мыши по Setup и в контекстном меню выберите Refresh, рис. 1.32.
- После чего, вы кликаете на Update. В правой части ячейки Setup должен появиться знак вопроса, который означает, что процесс еще не завершен.
- 3) Дважды кликните на Setup. Загрузится FLUENT Launcher.
- В разделе Options поставьте галочку рядом Double Precision, рис. 1.33.
- 5) Нажмите на ОК. FLUENT будет запущен.

Рис. 1.31

Рис. 1.32

FLUENT Launcher (Setting Edit Only)	
ANSYS	FLUENT Launcher
Dimension ② 2D ③ 3D	Options Image: Double Precision Image: Double Precision Image: Double Precision Image: Double Precision
Display Options Display Mesh After Reading Embed Graphics Windows Workbench Color Scheme Do not show this panel again Show More Options	Processing Options ๏ Serial ⊘ Parallel
	ancel <u>H</u> elp V

Рис. 1.33

Во FLUENTe можно будет выбрать уравнения и установить краевые условия, соответствующие рассматриваемой краевой задаче.

Рабочее окно FLUENTa имеет вид, показанный на рис. 1.34.

В левой части рабочего окна FLUENT находятся три основных элемента: Problem Setup, Solution и Results. С помощью этих элементов настраивают физическую модель, выбирают метод решения, обрабатывают результаты решения задачи. В правой части окна расположены панель графики и панель команд. В верхней части находится строка меню, через которую осуществляется доступ ко всем элементам пакета FLUENT.

B:Laminar Pipe (mesh2)) FLUENT [axi, pbns, lam] [FluentLM]	
<u>File M</u> esh D <u>e</u> fine <u>S</u> ol	ve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel <u>V</u> iew	<u>H</u> elp
 - - 0	\$₽€€ ∥® % ⊪ - □ -	
Problem Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Run Calculation 1 Check Case Preview Mesh Motion Number of Iterations Reporting Interval 1000 1 Profile Update Interval I 1 I Profile Update Interval I I I	L: Mesh
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results Graphics and Animations	Calculate	
Reports		Mesh
		1111 1111

Рис. 1.34

1.5.1. Проверка и изображение разностной сетки

Сначала необходимо проверить разностную сетку, чтобы убедиться, что она была правильно импортирована из Workbench.

- 1) Для получения статистики о сетке через строку меню выполните следующие действия Mesh→Info→Size.
- 2) На панели команд появится информация о сетке, рис. 1.35.

Mesh Size

Level Cells Faces Nodes Partitions 0 500 1105 606 1 1 cell zone, 5 face zones. Puc. 1.35.

Сетка содержит 500 элементов, которые во FLUENTe называются ячейками (cells).

 Далее необходимо проверить сетку на наличие ошибок, для чего через меню следует выполнить команду Mesh→Check. На панели команд появится информация, рис. 1.36.

```
Mesh Check
```

```
Domain Extents:

x-coordinate: min (m) = 0.0000000+00, max (m) = 8.0000000+00

y-coordinate: min (m) = 0.0000000+00, max (m) = 1.00000000-01

Volume statistics:

minimum volume (m3): 1.0053090-04

maximum volume (m3): 9.0478340-04

total volume (m3): 2.5132740-01

minimum 2d volume (m3): 1.5999980-03

maximum 2d volume (m3): 1.6000080-03

Face area statistics:

minimum face area (m2): 2.0000000-02

maximum face area (m2): 8.0000400-02

Checking mesh......

Done.
```

Рис. 1.36

Отсутствие сообщения об ошибке будет говорить о том, что разностная сетка была импортирована правильно.

 Для изображения сетки в графическом окне следует в разделе Problem Setup, который находится в левой части рабочего окна, выбрать General, затем кликнуть по кнопке Display. Появится окно Mesh Display, рис. 1.37.

File Mesh Dgfine Solve Adapt Surface Display Problem Setup Broblem Setup Setup Setup Setup Setup Image: Setup	A:Laminar Pipe FLUENT	[axi, pbns, lam] [F	luentLM]	A:Laminar Pipe FLUENT [axi, pbns, lam] [FluentLM]						
Image:	<u>F</u> ile <u>M</u> esh D <u>e</u> fine <u>S</u> ol	lve <u>A</u> dapt S <u>u</u> rfa	ce <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel	<u>V</u> iew <u>H</u> elp						
Problem Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Display Boundary Conditions Solver Mesh Interfaces Display Dynamic Mesh Reference Values Solution Solution Methods Solution Initialization Calculation Activities Run Calculation Gravity Plots Gravity Help Match Meth Surface Name Pattern Meth Surface Types Meth Surface Name Pattern Meth Match Meth Interior Match Surface Types Match Match Solution Initialization Calculation Calculation Activities Gravity Help Match Surface Name Pattern New Surface ▼ Match Match Display Colors Display Colors		G ∰® ⊕ ⊿	〃 @ 氿 開 ▾ □ ▾							
	Problem Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results Graphics and Animations Plots Reports	General Mesh Scale Display Solver Type © Pressure-Base © Density-Based Time © Steady © Transient Gravity Help	Check Report Quality Check Report Quality Check Report Quality Options Edge Type Outine Faces Partitions Shrink Factor Feature Angle O Surface Name Pattern Match Outine Interior Display Colo	I: Mesh I: Mesh Surfaces axis intetrior-surface_body outlet Surface Types axis dip-surf exhaust-fan fan						

Рис. 1.37

- 5) В разделе Surfaces окна Mesh Display выбрать все имеющиеся элементы (имена поверхностей) и нажать кнопку Display. В графическом окне будет показана разностная сетка.
- 6) Для перемещения изображения расчетной области и разностной сетки следует кликнуть по изображению с левой кнопки мыши и, удерживая ее, переместить курсор в требуемое место.
- Для увеличения изображения следует кликнуть средней кнопкой мыши в верхний левый угол участка изображения и, удерживая ее провести курсор в нижний правый угол изображения. Кнопку отпустить.

 Для уменьшения изображения надо выполнить действия подобные п.7, только следует проводить курсором из нижнего правого угла изображения в верхний левый угол.

1.5.2. Внесение данных в решатель

1) Задаем осесимметричную геометрию области. В разделе General→Solver→2D Space.

2) Выбираем Axisymmetric, рис. 1.38.

Рис. 1.38

 Устанавливаем модель вязкого ламинарного течения: Models→Viscous-Laminar→Edit. Откроется окно Viscous Model, в котором выбираем значение Laminar, рис. 1.39. Кликаем ОК. (По умолчанию, во FLUENTe выбрана опция Laminar).

Рис. 1.39

Energy X
Energy
Energy Equation
OK Cancel Help

Рис. 1.40

4) Отключаем уравнение энергии: Models→Energy→Edit, рис. 1.40. В нашем случае уравнение энергии решать не требуется. Поэтому нажимаем на Cancel.

1.5.3. Задание свойств жидкости

Свойства жидкости были указаны при постановке задачи.

1) Для создания жидкости с такими свойствами выполняем следующие действия: Materials—Fluid—Create/Edit, рис. 1.41.

A:Laminar Pipe FLUENT [axi, pbns, lam] [FluentLM]				
<u>File M</u> esh D <u>e</u> fine <u>S</u> ol	ve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel			
i 💕 • 🖬 • 🞯 🖉 i	\$ ⊕€€ ↗∥€ 洙 ⊪ - □ -			
Problem Setup	Materials			
General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Materials Fuid air Solid aluminum			
Solution Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results				
Graphics and Animations Plots Reports	Create/Edit			

Рис. 1.41

 В появившемся окне устанавливаем плотность 1 кг/м³ и вязкость 0.002 кг/(м·сек), рис. 1.42.

Name		- Material Type	Order Materials by
air		fluid	Name
Chemical Formula		FLUENT Fluid Materials	Chemical Formula FLUENT Database User-Defined Database
Properties		[
Density (kg/m3)	constant 1	Edit	
Viscosity (kg/m-s)	constant	▼ Edit	
	0.002	E	
		-	
,	Change/Create	Delete	Help

Рис. 1.42.

3) Кликаем кнопку Change/Create, затем Close.

1.5.4. Задание граничных условий

По условию задачи необходимо задать условия на четырех границах:

 Задаем условия на входной границе: Boundary Conditions—Zone (Inlet)—Edit, рис. 1.43. Автоматически произойдет выбор значения velocity-inlet в разделе Туре.

💶 A:Laminar Pipe FLUENT [axi, pbns, lam] [FluentLM]					
<u>File M</u> esh D <u>e</u> fine <u>S</u> o	lve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel <u>V</u> ie				
	ઙ⊕€€≯ᆙᅊᄷ⊪▾◻▾				
Problem Setup	Boundary Conditions				
General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Pedforence Values	Zone axis inlet interior-surface_body outlet wall				
Solution					
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation					
Results					
Graphics and Animations Plots Reports	Phase Type ID mixture velocity-inlet 7 Edit Copy Profiles Parameters Operating Conditions				
	Display Mesn				

Рис. 1.43.

2) В появившемся окне Velocity Inlet, рис. 1.44 вбираем значение Velocity Specification Method равным Components и устанавливаем значение Axial-Velocity(m/s) равным 1.

ſ	Velocity Inlet	J
	Zone Name inlet	
	Momentum Thermal Radiation Species DPM Multiphase UDS	
	Reference Frame Absolute	
	Velocity Magnitude (m/s) 1 constant	
	Supersonic/Initial Gauge Pressure (pascal) 0 constant	
	OK Cancel Help	

Рис. 1.44

- 3) Кликаем ОК и закрываем окно.
- 4) Задаем условия на выходной границе: Boundary Conditions-Outlet-Edit.
- 5) Значение Gauge Pressure (pascal) устанавливаем равное 0. Кликаем ОК.
- 6) Задаем условия на оси симметрии: Boundary Conditions \rightarrow Zone (axis). Меняем значение Туре на axis, рис. 1.45. В появившемся окне Question кликаем Yes, а в окне Axis на OK.
- 7) Как можно видеть зона wall имеет значение Туре равное wall. Если это не так, то необходимо под Туре выбрать значение равное wall.
- 9) После задания настроек, сохраните проект через строку меню File→Save Project.

1.5.5. Выбор разностной схемы

Для решения поставленной задачи мы будем использовать алгоритм SIMPLE метода Патанкара, с привлечением схемы второго порядка точности для конвективных членов в уравнении сохранения импульса.

Рис. 1.45
Для выбора разностных схем используется раздел Solution. Убедитесь, что в подразделе Solution Methods установлены значения, показанные на рис. 1.46.

Рис. 1.46

1.5.6. Задание начальных условий

- 1) В разделе Solution выбираем Solution Initialization.
- 2) Меняем метод инициализации на Standard Initialization.

- 3) Кликаем на Compute from и выбираем inlet.
- 4) Кликаем Initialize, рис. 1.47.

1.5.7. Настройка критерия сходимости

FLUENT выдает информацию о невязке для каждого решаемого уравнения. Невязка является мерой того, насколько хорошо текущее решение удовлетворяет дискретной форме основного уравнения. Мы будем итерировать каждое уравнение до тех пор, пока невязка не упадет ниже 10⁻⁶. Для задания критерия невязки выполняем следующие действия.

- 1) В разделе Solution выбираем Monitors.
- 2) В разделе Monitors выбираем Residuals, и далее жмем кнопку Edit, рис. 1.48.
- В появившемся окне Residual Monitors изменяем значения Absolute Criteria, расположенные напротив строк Residual для continuity, x-velocity, y-velocity, на 10⁻⁶ рис. 1.49.

<u>File Mesh Define So</u>	Ive Adapt Surface Display Report Parallel Vie
	\$ ⊕ Q Q ↗∥ Q Ҳ ‼ ▾ □ ▾
Problem Setup General Models Materials Phases Celi Zone Conditions Boundary Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Controls	Solution Initialization Initialization Methods Hybrid Initialization Standard Initialization Compute from Iniet Reference Frame Reference Frame Relative to Cell Zone Absolute Initial Values
Monitors Solution Intelenzation Calculation Activities Run Calculation Results Graphics and Animations Piots Reports	Gauge Pressure (pascal) 0 Axial Velocity (m/s) 1 Radial Velocity (m/s) 0 E Initialize Reset Patch

Рис. 1.47

🖬 A:Laminar Pipe FLUENT [axi, pbns, lam] [FluentLM]			
File Mesh Define So	ve Adapt Surface Display Report Parallel		
	S伊��↗∥@Հ뭬▾□▾		
Problem Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values	Monitors Residuals, Statistic and Force Monitors Residuals - Print, Plot Statistic - Off Create Edit Delete		
Solution	Surface Monitors		
Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation			
Results	Create Edit Delete		
Graphics and Animations Plots Reports	Volume Monitors		

Рис. 1.48

Residual Monitors	-			-	x
Options	Equations Residual	Monitor Ch	eck Convergence	e Absolute Criteria	
V Plot	continuity	V	\checkmark	1e-06	
1 Curves Axes	x-velocity	Ø 0	\checkmark	1e-06	=
Iterations to Plot	y-velocity	V	∇	1e-06	ノ・
	Residual Values		1	Convergence (Criterion
Iterations to Store	Normalize	ĺ			
	Scale	al Scale			
OK Plot	Renormaliz	e Car	ncel He	: lp	

Рис. 1.49

1.5.8. Расчет коэффициента трения

Коэффициент трения жидкости на поверхности определяется по формуле: $C_D = \frac{F_D}{rac{1}{2} \, \rho_{ref} V_{ref}^2 A_{ref}}$. Здесь A_{ref} – площадь цилиндрической

поверхности канала, V_{ref} – скорость потока на входе в канал, ρ_{ref} – плотность жидкости, F_D – сила трения на цилиндрической поверхно-

сти канала, $\int \mu \, \frac{\partial u}{\partial n} \, d\sigma$. Для нахождения коэффициента трения необ-

ходимо выполнить следующие действия:

- 1) В разделе Solution выбираем Monitors.
- Под окном Residuals, Statistic and Force Monitors жмем кнопку Create и в выпадающем окне выбираем Drag, puc. 1.50.

	A:Laminar Pipe FLUENT	[axi, pbns, lam] [FluentLM]
1	<u>File M</u> esh D <u>e</u> fine <u>S</u> ol	lve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel
l	🗟 • 🔒 • 🗟 🖉	5 🕀 Q O 🥒 🕸 🧶 🖪 🕶 🖃 🗸
i	Problem Setup	Monitors
	General	Residuals, Statistic and Force Monitors
	Models	Residuals - Print, Plot
	Phases	Statistic - Off
	Cell Zone Conditions	
	Boundary Conditions	
	Mesh Interfaces	
_	Reference Values	Create Edit Delete
	Solution	Drag
	Solution Methods	Lift
	Solution Controls	Moment
	Solution Initialization	
	Calculation Activities	
	Run Calculation	
	Results	Create

Рис. 1.50

- В появившемся окне Drag Monitor в разделе Options устанавливаем галочку напортив Print to Console. Это означает, что значение коэффициента трения будет выводиться в окно консоли.
- 4) Устанавливаем галочку напротив Plot. При этом окно Window будет активировано и значение в окне будет изменено на 2, что означает, что будет создано 2-е графическое окно, в которое будет осуществляться вывод коэффициента трения.
- 5) В окне Wall Zone выбираем wall, рис. 1.51.
- 6) Закрываем окно Drag Monitor, нажав ОК.

Drag Monitor	x
Name	Wall Zones
cd-1	wall
Options	
 ✓ Print to Console ✓ Plot 	
Window 2 Curves Axes	
Write	
File Name Cd-1-history	
Per Zone	
Force Vector	
X Y Z 1 0 0	
Save Output Parameter	
OK Plot Clear	Cancel Help

Рис. 1.51

Чтобы коэффициент трения правильно рассчитывался необходимо найти площадь цилиндрической поверхности канала A_{ref} , задать V_{ref} и ρ_{ref} .

- 1) . Для этого выбираем раздел Reports, далее Surface Integrals, нажимаем кнопку Set Up, рис. 1.52.
- 2) В появившемся окне Surface Integrals, в разделе Report Type выбираем Area, а в разделе Surfaces выбираем wall. Жмем кнопку Compute.
- В окне Area (m2) появится значение площади цилиндрической поверхности, которая имеет имя wall, рис. 1.53. Это же значение будет напечатано в командном окне FLUETa, рис. 1.54.

A:Laminar Pipe FLUENT	[axi, pbns, lam] [FluentLM]
<u>F</u> ile <u>M</u> esh D <u>e</u> fine <u>S</u> ol	ve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel
i 🖻 • 🖬 • 🞯 🖉 i	5 🕀 Q Q 🥒 🕸 🧶 🖪 🕶 🗆 🗸
Problem Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation Results Graphics and Animations Plots	Reports Reports Fluxes Forces Projected Areas - Unavailable Surface Integrals Volume Integrals Discrete Phase: Sample Histogram Summary - Unavailable Heat Exchanger - Unavailable Set Up Parameters
Reports	Help

Рис. 1.52

Surface Integrals	Transa Trapile Transa Page	x
Report Type	Field Variable	
Area	Pressure	-
Surface Types	Static Pressure	-
axis dip-surf	Phase	
exhaust-fan	mixture	
Itan	Surfaces	
Surface Name Pattern	axis inlet	
Match	interior-surface_body	
	wall	
	(
	Area (m2)	
Save Output Parameter	0.020010	
Compute	e Close Help	

Рис. 1.53

- Копируем значение площади поверхности. Закрываем окно Sur-4) face Integrals, нажав на кнопку Close.
- Переходим в раздел Problem Setup. Выбираем подраздел Refer-5) ence Values, рис. 1.55.
- Вставляем скопированное значение площади в строку Area (m2). В строках Density (kg/m³), Velocity (m/s) задаем значения 1. 6)
- 7)

ĺ	A:Laminar Pipe FLUENT	[axi, pbns, lam] [FluentLM]
	<u>F</u> ile <u>M</u> esh D <u>e</u> fine <u>S</u> ol	ve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel <u>V</u>
	i 💣 • 🖬 • 🞯 🖉 🧯	ઙ⊕€€↗∥ᅊՀℍ▾□▾
	Problem Setup	Reference Values
	General	Compute from
	Models	· · · · · · · · · · · · · · · · · · ·
	Materials Phases	Reference Values
	Cell Zone Conditions Boundary Conditions	Area (m2) 5.026548
	Mesh Interfaces Dynamic Mesh	Density (kg/m3)
	Reference Values Solution	Enthalpy (j/kg)
	Solution Methods Solution Controls	Length (m) 1
	Monitors Solution Initialization	Pressure (pascal)
	Run Calculation	Temperature (k) 288.16
	Results Graphics and Animations	Velocity (m/s)
	Plots Reports	Viscosity (kg/m-s) 0.002
		Ratio of Specific Heats 1.4

Рис. 1.55

1.5.9. Выполнение расчетов

Перед выполнением расчетов необходимо задать число итераций. Для этого

- 1) В разделе Solution выберите Run Calculation.
- 2) В строке Number Iterations задайте число итераций 100.
- 3) Coxpanute проект, File \rightarrow Save Project.
- 4) Нажмите кнопку Calculate, рис. 1.56.

A:Laminar Pipe FLUENT [axi, pbns, lam] [FluentLM]				
File Mesh	Define Sol	ve Adapt Surface Display Report Parallel		
	• 0 0	ઙ⊕€€↗∥◙똤⊪▾□▾		
Problem Setup		Run Calculation		
General Models		Check Case Preview Mesh Motion		
Materials Phases Cell Zone Co Boundary Co	onditions	Number of Iterations Reporting Interval		
Mesh Interfa Dynamic Mes Reference V	aces sh 'alues	Profile Update Interval		
Solution		Data File Quantities Acoustic Signals		
Solution Met Solution Con Monitors Solution Initi	hods atrols alization	Calculate		
Calculation A Run Calculat	Activities tion	Help		
Results				
Graphics and Plots Reports	d Animations			

Рис. 1.56

- 5) Невязки на каждой итерации будут выводиться в окно консоли и строиться в виде зависимостей от номера итерации в графическом окне.
- 6) Значение коэффициента трения Cd-1 будет выведено в окно консоли и построено во втором графическом окне, рис. 1.57.
- 7) Coxpanute проект, File \rightarrow Save Project.

Рис. 1.57

1.6. Обработка результатов расчета с помощью средств FLUENTa

Результаты расчетов можно обработать либо с помощью средств встроенных FLUENT, либо с помощью ANSYS постпроцессора CFD-Post.

1.6.1. Построение поля векторов скоростей

- 1) В разделе Results выбираем подраздел Graphics and Animations.
- 2) В окне Graphics выбираем Vectors и жмем кнопку Set Up, рис. 1.58.
- 3) В появившемся окне Vectors, рис. 1.59. жмем кнопку Display. В графическом окне будет показано поле векторов скоростей.
- 4) Приблизить или увеличить изображение можно путем выделения прямоугольной области, зажав среднюю кнопку мыши, и проводя курсором из левого верхнего угла в нижний правый угол, рис. 1.60. Обратная операция позволяет отдалить или уменьшить изображение.
- 5) Длина векторов регулируется коэффициентом, стоящим в поле

Scale окна Vectors. После изменения значения коэффициента следует нажать кнопку Display.

6) Закройте окно Vectors, нажав на кнопку Close.

Рис. 1.58

Vectors		X
Options	Vectors of	
🕼 Global Range	Velocity	•
Auto Range	Color by	
Auto Scale	Velocity	•
Draw Mesh	Velocity Magnitude	•
Style	Min (m/s)	Max (m/s)
arrow	0.3842909	1.923145
Scale Skip	Surfaces	
	axis	
Vector Options	inlet interior-surface body	
Custom Vestore	outlet	
Custom vectors	wai	
Surface Name Dattern		
Match	New Surface 🕶	
	Surface Types	
	axis	*
	dip-surf exhaust-fan	
	fan	-
[Display] [C	Compute Close	Help

Рис. 1.59

Рис. 1.60

1.6.2. Построение изолиний модуля скорости

Для построения изолиний модуля скорости следует выполнить такие действия:

- 1) В разделе Results выбираем подраздел Graphics and Animations.
- В окне Graphics выбираем Contours и жмем кнопку Set Up, рис. 1.61.
- 3) В появившемся окне Contours в разделе Contours of выбираем Velocity и Velocity Magnitude. Жмем кнопку Display, рис. 1.62.
- В графическом окне будут изображены изолинии модуля скорости, рис. 1.63.

Рис. 1.61

Contours		1.0	x
Options	Contours of		
Filled	Velocity		•
✓ Node Values	Velocity Magnitude]	•
Auto Range	Min (m/s)	Max (m/s)	
Clip to Range	0	1.923104	
Draw Profiles	Eurfacea		
	axis		
Levels Setup	inlet		
20 1	outlet		
	wall		
Surface Name Pattern	New Surface 💌		
Match			
	Surface Types		
	clip-surf		I
	exhaust-fan		
	Itan		Ŧ
Display	Compute Close	Help	

Рис. 1.62

Рис. 1.63

- Количество построенных изолиний можно изменить, указав требуемое число (не более 100) в поле Levels, после чего нажать кнопку Display.
- 6) Поле модуля скорости можно представить в виде зон, в которых пространство между изолиниями окрашено в определенный цвет, соответствующий значению модулю скорости, указанному на шкале, расположенной в левой части графического окна. Для этого в окне Contours в разделе Options следует установить галочку рядом с Filled и нажать на кнопку Display, рис. 1.64. В графическом окне появится окрашенное поле контуров модуля скорости, рис. 1.65.

Contours		x
Options Image: The second s	Contours of Velocity Velocity Magnitude Min (m/s) 0 1.923104 Surfaces	•
Levels Setup 20 • 1 •	axis inlet interior-surface_body outlet wall	
Surface Name Pattern Match	New Surface Surface Types axis dip-surf exhaust-fan fan	
Display	Compute Close Help	

Рис. 1.64

Рис. 1.65

Рис. 1.66

1.6.3. Построение профиля скорости на выходе из канала

- В разделе Results выбираем Plots. В поле Plots выбираем XY Plot, рис. 1.66.
- 2) Жмем кнопку Set Up Появиться окно Solution XY Plot.
- В окне Solution XY Plot настраиваем опции, как показано на рис. 1.67.

Solution XY Plot	-	X
Options Ølione Values Position on X Axis Position on Y Axis Ølione Ølione Order Points File File Data E	Plot Direction X 0 Y 1 Z 0 Load File Free Data	Y Axis Function Direction Vector X Axis Function Velocity Axial Velocity Surfaces axis inlet interior-surface body outlet wall New Surface
Plot	Axes	Curves Close Help

Рис. 1.67

- Нажимаем кнопку Plot, в графическом окне будет изображен профиль осевой скорости. По оси абсцисс будет отложена продольная скорость, а по оси ординат – радиальная координата, рис. 1.68.
- 5) Для более наглядного представления полученного профиля скорости можно соединить точки линиями. Для этого в окне Solution XY Plot, рис. 1.67, следует нажать кнопку Curves .
- 6) В появившемся окне Curves Solution XY Plot выбрать значение Pattern раздела Line Style, как показано на рис. 1.69.

Рис. 1.68

Curves - Solution XY Plot				
Curve #	ine Style Pattern Color foreground Weight 1	Marker Style Symbol Color foreground Size 0.3		
Apply Close Help				

Рис. 1.69

 Нажать кнопку Apply. После чего нажать кнопку Plot в окне Solution XY Plot. В графическом окне будет изображен профиль продольной скорости на выходе из канала, рис. 1.70.

Рис. 1.70

1.6.4. Построение изменения давления вдоль оси канала

Для построения графика изменения давления вдоль оси канала поступаем аналогично предыдущему пункту.

- 1) Results \rightarrow Plots \rightarrow XY Plots \rightarrow Set Up
- 2) Настраиваем опции окна Solution XY Plot так, как показано на рис. 1.71.
- Жмем кнопку Plot. В графическом окне будет показан требуемый график, рис. 1.72.

Solution XY Plot		X
Options Options Option X Axis Position on X Axis Position on Y Axis Virite to File Order Points File Data	Plot Direction X 1 Y 0 Z 0 Load File Free Data	Y Axis Function Pressure Static Pressure X Axis Function Direction Vector Surfaces
Plot	Axes	Curves Close Help

Рис. 1.71

Рис. 1.72

1.6.5. Контроль и проверка решения

При проведении расчета мы контролировали значение невязок для каждого из уравнений. По достижении всех невязок значения меньшего, чем 10^{-6} , мы полагаем, что итерационный процесс сошелся, и мы получили численное решение. Невязка, в данном случае, является косвенной характеристикой. Мы можем убедиться в правильности решения исходной системы уравнений Навье Стокса, если проверим интегральное выполнение законов сохранения массы и импульса.

Уравнение неразрывности, которое отражает закон сохранения массы, имеет вид:

$$\frac{\partial r \rho U}{\partial x} + \frac{\partial r \rho V}{\partial r} = 0.$$

Умножим уравнение на 2π , проинтегрируем его по *r* от 0 до *R* и по *x* от 0 до *L*. Применим формулу Грина:

$$\int_{0}^{L} \int_{0}^{R} 2\pi \left(\frac{\partial r \rho U}{\partial x} + \frac{\partial r \rho V}{\partial r} \right) dx dr = \oint 2\pi \left(-r \rho V dx + r \rho U dr \right) = 0.$$

Расписывая контурный интеграл по границе области, получим

$$-\int_{0}^{L} 2\pi r \rho V \Big|_{r=0} dx - \int_{L}^{0} 2\pi r \rho V \Big|_{r=R} dx + \int_{0}^{R} 2\pi r \rho U \Big|_{x=L} dr + \int_{R}^{0} 2\pi r \rho U \Big|_{x=0} dr = 0.$$

Первые два слагаемых обращаются в 0, т.к. и на оси симметрии, и на стенке, радиальная скорость жидкости равна 0, тогда получим:

$$\int_{0}^{R} 2\pi r \rho U \Big|_{x=L} dr - \int_{0}^{R} 2\pi r \rho U \Big|_{x=0} dr = 0.$$

Это означает, что для проверки закона сохранения массы мы должны убедиться в том что, сколько жидкости в область втекло, столько же должно из нее и вытечь. Для этого выполним следующую последовательность действий: Reports—Fluxes—Set Up, рис. 1.73. Появится окно Flux Reports, в котором выделяем границы inlet и outlet и жмем кнопку Compute, рис. 1.74. В поле Results появятся значения потоков массы (кг/сек) для каждой границы, а в поле Net Results – сумма этих потоков. Обратите внимание на то, что поток массы на выходной границе отрицательный, что говорит о вытекании жидкости из области. Интегральную ошибку расчета по массе в процентах можно определить как отношение суммы потоков на границах области к потоку на входной границе, умноженное на 100.

	A:Laminar Pipe FLUENT [axi, pbns, lam] [FluentLM]			
	<u>F</u> ile <u>M</u> esh D <u>e</u> fine <u>S</u> ol	ve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel		
ì	i 🚅 🕶 🚽 🖬 🔘 🧯	ऽॎॖ€€€↗∥◙次⊪▾□▾		
1	Problem Setup	Reports		
	General Models Materials Phases Cell Zone Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation	Reports Forces Projected Areas - Unavailable Surface Integrals Volume Integrals Discrete Phase: Sample Histogram Summary - Unavailable Heat Exchanger - Unavailable		
	Results			
	Plots Reports	Set Up Parameters		

Рис. 1.73

Рис. 1.74

Проверим теперь выполнение закона сохранения импульса для продольной компоненты вектора скорости. Уравнение импульса в продольном направлении можно записать в виде:

$$\frac{\partial}{\partial x} \left[r \left(\rho U^2 + P - \mu \frac{\partial U}{\partial x} \right) \right] + \frac{\partial}{\partial r} \left[r \left(\rho U V - \mu \frac{\partial U}{\partial r} \right) \right] = 0.$$

Повторяя те же самые действия, что мы делали с уравнение неразрывности, получим:

$$-\int_{0}^{L} 2\pi r \left(\rho UV - \mu \frac{\partial U}{\partial r}\right) \bigg|_{r=0} dx - \int_{L}^{0} 2\pi r \left(\rho UV - \mu \frac{\partial U}{\partial r}\right) \bigg|_{r=R} dx + \int_{0}^{R} 2\pi r \left(\rho U^{2} + P - \mu \frac{\partial U}{\partial x}\right) \bigg|_{x=L} dr + \int_{R}^{0} 2\pi r \left(\rho U^{2} + P - \mu \frac{\partial U}{\partial x}\right) \bigg|_{x=0} dr = 0$$

Учитывая, что на входе в канал и на выходе из канала $\frac{\partial U}{\partial x} = 0$, и на поверхности канала V=0, получим:

$$\int_{L}^{0} 2\pi r \left(\mu \frac{\partial U}{\partial r} \right) \bigg|_{r=R} dx + \int_{0}^{R} 2\pi r \left(\rho U^2 + P \right) \bigg|_{x=L} dr - \int_{0}^{R} 2\pi r \left(\rho U^2 + P \right) \bigg|_{x=0} dr = 0$$

Первое слагаемое полученного соотношения представляет собой не что иное, как силу трения жидкости о боковую цилиндрическую поверхность канала, а другие два – разность потоков импульса жидкости на выходе и входе в канал.

Рис. 1.75

Для нахождения силы трения следует выполнить Reports—Forces—Set Up, рис. 1.75. В появившемся окне Force Reports настроить опции, как показано на рис. 1.76, и нажать кнопку Print. В окне консоли будет выведена информация о силе трения на боковой поверхности, которой мы дали имя wall, рис. 1.77.

Для нахождения потоков импульса через входную и выходную границы создадим новую переменную под названием *impulse*. Для этого через строку меню выполним Define \rightarrow Custom Field Functions, puc. 1.78.

Force Reports	(martistary)	X
Options © Forces © Moments © Center of Pressure	Direction Vector X 1 Y 0 Z 0	Wall Zones 🖹 🚍
Wall Name Pattern Matu Save Output Parameter. Print W	h rite) Close	Help

Рис. 1.76

Forces

Zone wall	Forces (n) Pressure (000)		(Viscous (0.39561415 0 0)
Net	(000)			(0.39561415 0 0)
Forces - Direction Vector	(1 0 0) Forces (n)			Coefficients
Zone	Pressure	Viscous	Total	Pressure
wall	9	0.39561415	0.39561415	0
Net	0	0.39561415	0.39561415	0

D:FLUENT	FLUENT [axi, dp, pbns, lam] [FluentLN	/I]
File Mesh	Define Solve Adapt Surface D	isplay
Problem Setur General Models Materials Phases Cell Zone Co Boundary C Mesh Interfi Dynamic Me Reference V Solution Solution Me Solution Cor Monitors Solution Init Calculation A Run Calcula	General Models Materials Phases Cell Zone Conditions Boundary Conditions Operating Conditions Operating Conditions Mesh Interfaces Dynamic Mesh Mesh Morpher/Optimizer Mixing Planes Turbo Topology Injections DTRM Rays Shell Conduction Walls	-
Plots	Custom Field Functions	
Reports	Darameters	
	Parameters Profiles	
	Units	
	User-Defined	•

Рис. 1.78

1	Custom Field Function Calculator	×			
	Definition density * axial-velocity ^ 2 + p	_			
	+ - X / y^x ABS Select Operand Field Functions from INV sin cos tan In log10 Field Functions 0 1 2 3 4 SQRT Field Functions 5 6 7 8 9 CE/C Static Pressure Select () PI e DEL Select Select]			
	New Function Name impulse				
	Define Manage Close Help				

Рис. 1.79

Откроется окно Custom Field Functions Calculator, рис. 1.79. В этом окне с помощью значений поля Field Functions, кнопки Select и кнопок калькулятора и создаем выражение density*axial-velocity^2+p, которое появится в поле Definition, и этому выражению в поле New Function Name даем имя *impulse*. Жмем кнопку Define. Далее выполняем действия: Results—Reports—Surface Integrals—Set Up появится окно Surface Integrals. В этом окне в поле Reports Туре выбираем Integrals. В поле Field Variable выбираем Custom Field Functions и затем имя созданной нами переменной impulse. В поле Surfaces выбираем inlet и outlet. Жмем кнопку Compute, рис. 1.80.

В окне консоли появятся значения потока импульса на входе и выходе из канала, рис. 1.81.

Находим разность между потоками импульса на выходе и входе в канал: 0.395444201. Сравним полученное изменение потоков импульса с силой, действующей на боковую поверхность 0.39561415. Видим, что погрешность не превосходит 0.04%.

Закройте FLUENT: File→Close FLUENT.

Surface Integrals	x
Report Type	Field Variable
Integral 🔻	Custom Field Functions 🔻
Surface Types	mpulse -
axis	Phase
exhaust-fan	mixture 👻
fan 🔻	Surfaces
Surface Name Pattern	axis
	interior-surface_body
Match	outlet
	Integral (pascal)(m2)
Save Output Parameter	0
Compute Write	. Close Help

Рис. 1.80

Integral

	Tuhaze
0.43578309 0.040338889	inlet outlet
0.47612199	Net

Рис. 1.81

1.7. Измельчение сетки

Получим решение на более мелкой сетке, для чего увеличим число разбиений в радиальном направлении с 5 до 10.

- 1) Для этого надо кликнуть правой кнопкой мыши на схеме проекта по Mesh и выбрать Dublicate, рис. 1.82.
- 2) Появиться новая страница проекта. Переименуем ее в Laminar Pipe (mesh2), рис. 1.83.
- 3) Кликаем по Mesh в странице Laminar Pipe (mesh2).
- На панели Details of "Mesh" в разделе Sizing значение строки Use Advanced Size Function изменяем на Off.
- 5) Увеличиваем число разбиений в радиальном направлении.
- 6) Число ячеек должно равняться 1000. Это можно увидеть на панели Details of "Mesh" в разделе Statistics в правой части строки Elements.
- 7) Закрываем программу Meshing.

Рис. 1.82

1.8. Просмотр результатов

- 1) На схеме проекта Laminar Pipe (mesh2) выполняем правый клик по строке Fluid Flow (FLUENT) и в контекстном меню выбираем Update.
- 2) Ждем некоторое время, пока FLUENT проведет весь расчет. Запускаем FLUENT снова. Анализируем результаты.

1.9. Задание для самостоятельной работы

Решите задачу о развитии течения несжимаемой жидкости в трубе длиной 8 метров, диаметром 0.2 метра. Плотность жидкости 1 кг/м³, вязкость жидкости 0.002 Па·с, скорость жидкости на входе в трубу 1 м/с.

Для решения используйте FLUENT, схему второго порядка аппроксимации для уравнения сохранения импульса. Решение требуется получить на разностных сетках 100×5 , 100×10 и 100×20 , (осевое разбиение × радиальное разбиение).

1. Постройте профили осевой скорости на выходе из трубы, полученные на трех различных сетках. Также постройте профиль скорости, полученный из решения задачи о развитом течении несжимаемой жидкости в трубе постоянного сечения. На одном графике должно быть 4 кривых. Осевая скорость должна быть отложена на оси абсцисс, а радиальная координата – по оси ординат.

2. Рассчитайте сдвиговое напряжение τ_{xy} на стенке в области полностью развитого течения на трех сетках. Рассчитайте это значение из теории полностью развитого течения жидкости в трубе. Для каждой сетки рассчитайте ошибку относительно аналитического решения. Поместите результаты расчетов в таблицу:

Сетка	$ au_{_{xy}}$	% ошибка

3. На выходе из трубы, где течение полностью развитое, ошибку в осевой скорости на оси симметрии можно определить как

$$arepsilon = rac{\left| u_{_{calc}} - u_{_{exact}}
ight|}{u_{_{eract}}}$$

Ожидается, что ошибка будет иметь вид: $\varepsilon = K\Delta r^p$, Δr – размер ячейки в радиальном направлении, K и p – постоянные, значение которых будет зависеть от выбранной разностной схемы. Используя метод наименьших квадратов, предварительно прологарифмировав зависимость $\ln \varepsilon = \ln K + p \cdot \ln \Delta r$, найти постоянные K и p.

4. Посмотрите, как изменится значение p при смене разностной схемы с "second-order upwind" на "first-order upwind". На графике должно быть изображено четыре кривые. По две для каждой разностной схемы. Сравните значения p и дайте объяснение полученным результатам. Следует помнить, что схемы второго и первого порядка точности применяются только для инерционных членов уравнения сохранения импульса, а дискретизация вязких членов всегда имеет второй порядок точности.

Справочная информация

Профиль скорости полностью развитого ламинарного течения вязкой несжимаемой жидкости в круглой трубе радиуса *R* определяется по формуле:

$$u(y) = 2u_{av}\left(1 - \frac{y^2}{R^2}\right),$$

где u_{av} – средняя по сечению трубы скорость течения жидкости. В рассматриваемой задаче эта скорость равна скорости жидкости на входе в трубу.

Сдвиговое напряжение жидкости на стенке трубы находится из выражения:

Сила трения, действующая со стороны жидкости на стенку трубы, определяется по формуле:

$$F_{\rm fric} = -\int_{S} \tau_{w} ds = -\int_{0}^{L} 2\pi R \tau_{w} dx = 8 \cdot \pi \cdot u_{av} \cdot L \cdot \mu \,.$$

Коэффициент трения жидкости о поверхность трубы определяется по формуле:

$$c_{D} = \frac{F_{fric}}{\frac{1}{2}\rho u_{av}^{2}S} = \frac{8\cdot\pi\cdot u_{av}\cdot L\cdot\mu}{\frac{1}{2}\rho u_{av}^{2}\cdot\pi\cdot D\cdot L} = \frac{16}{\text{Re}},$$

где $\operatorname{Re} = \rho u_{av} D / \mu$.

2. ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ

2.1. Описание задачи

Рассмотрим задачу о турбулентном течении жидкости в круглой трубе постоянного сечения, рис. 2.1. Диаметр трубы D = 0.2 м, длина трубы L = 8 м. Скорость жидкости на входе в трубу $U_z = 1$ м/сек является постоянной по всему входному сечению. Жидкость вытекает в окружающую среду, давление которой равно 1 атм. Примем плотность среды $\rho = 1$ кг/м³, а коэффициент вязкости $\mu = 2 \times 10^{-5}$ Па·с. Число Рейнольдса, построенного на основе диаметра трубы равно:

$$\operatorname{Re} = \frac{\rho U_z D}{\mu} = 10000$$

При таких значениях числа Рейнольдса течение в трубе будет полностью турбулентным.

Решим эту задачу, используя FLUENT с помощью ANSYS Workbench. Построим поля скорости и давления внутри трубы, и проверим результаты.

2.2. Предварительные замечания

При турбулентном течении возникают мелко-масштабные по времени пульсации. Обычно, эти пульсации не удается разрешить, применяя средства вычислительной гидродинамики. Поэтому такие переменные потока, как скорость, давление и т.д., усредняются по времени. К сожалению, усредненные по времени определяющие уравнения не замыкаются. (Т.е. они содержат пульсационные величины, которые нужно определить с помощью каких либо моделей турбулентности). До сих пор не существует единой модели турбулентности, которая бы была справедлива для всех типов течений, и поэтому необходимо выбирать и настраивать модель для конкретного класса течений.

В данном задании рассматриваются только, так называемая, k-є модель турбулентности. При решении же практических задач необходимо проводить тщательный анализ вида течения, чтобы обосновано выбрать ту или иную модель турбулентности. k-є модель турбулентности включает в себя два уравнения – для турбулентной кинетической энергии k, и для скорости диссипации турбулентной энергии є. Эти два уравнения решаются совместно с осредненными по времени уравнениями неразрывности, импульса и энергии. Расчеты турбулентных течений занимают гораздо больше времени, чем расчеты ламинарных течений.

2.3. Создание проекта в ANSYS Workbench

1) Запускаем ANSYS Workbench:

Start> All Programs> ANSYS 14.0> Workbench 14.0.

На рис. 2.2 показано окно Workbench:

Рис. 2.2

В левой стороне окна Workbench будет находиться панель инструментов, заполненная системами для решения различных физических задач. Посредине будет организован создаваемый проект. В окне Analysis Systems дважды щелкаем по строке Fluid Flow (FLUENT). Окно Workbench будет выглядеть как на рис. 2.3.

Рис. 2.3

- 2) В окне Property of Schematic, в разделе Advance Geometry Options измените значение Analysis Туре на 2D, поскольку далее мы будем использовать двумерную модель.
- 3) Сохраните проект под именем Turbulent Pipe.
- В окне Project Schematic (окна Workbench) кликните правой кнопкой мышки на Geometry и выберите Properties, как показано на рис.
 В правой части окна Workbench появится окно Property of Schematic.
- 5) Импортируем геометрию из задачи о ламинарном течении жидкости в трубе. В окне Project Schematic кликаем правой кнопкой мыши по Geometry и в появившемся окне выбираем Import Geometry, затем выбираем Browse, рис. 2.5:

Рис. 2.4

Рис. 2.5

6) В появившемся окне выбираем файл, в котором хранится геометрия трубы, созданная нами в предыдущей задаче, рис. 2.6.

Рис. 2.6

7) В окне проекта кликаем правой кнопкой мыши по строке Mesh и далее Edit, рис. 2.7. После этого откроется окно Meshing.

Рис. 2.7

2.4. Построение сетки

Сетка будет состоять из 3000 элементов, в продольном направлении выбираем 100 элементов, а в поперечном 30 элементов. Сетку построим так, чтобы она сгущалась к стенке.

1) Генерируем сетку: Generate Mesh.

- 2) Применяем стиль Mapped Face Meshing. Чтобы включить этот стиль выполняют последовательность Mesh Control→ Mapped Face Meshing, рис. 2.8.
- Кликаем по геометрической области, после чего она окрашивается в зеленый цвет. После этого кликаем Apply на панели Details of "Mapped Face Meshing", рис. 2.9.

🕅 A : Fluid Flow (FLUENT) - Mes	shing [ANSYS ICEM CFD]
J File Edit View Units Tools	Help ∮Generate Mesh 🗇 🔤
」 দ Show Vertices 🛱 Wirefram	e 🛛 🖩 Edge Coloring 👻 🔏 🗸 🗸
Mesh 🖸 Update 🎕 Mesh 🗸	🔍 Mesh Control 🔻 💷 III Metric Grap
Outline	Method Mesh Group
 Model (A3) → M Geometry → M Geometry → M Surface Body ⊕ → Coordinate Systems → M Mesh 	 Sizing Contact Sizing Refinement Mapped Face Meshing Match Control Pinch Inflation Sharp Angle Gap Tool

Рис. 2.8

D	etails of "Mapped Face Mesh	ning" - Mapped Fac	e Meshing	ņ
-	Scope			
	Scoping Method	Geometry Selection		
		Apply	Cancel	
Ξ	Definition			
	Suppressed	No		
	Method	Quadrilaterals		
	Radial Number of Divisions	Default		
	Constrain Boundary	No		

Рис. 2.9

2.4.1. Задание узлов сетки на границе области

- Сначала зададим число разбиений вдоль осевого направления. Для этого кликаем Mesh Control > Sizing.
- 2) Кликаем по фильтру Edge . Затем подвдим курсор к нижней границе прямоугольника, (она при этом окрасится в зелены йцвет), нажимаем левую кнопку мыши, и не опуская ее переводим курсор к верхней границе прямоугольника. После этой процедуры обе границы должны быть окрашены в зеленый цвет. После этого кликаем Apply на панели Details of "Sizing".
- На панели Details of "Sizing" в поле Туре выбираем Number of Divisions и устанавливаем значение 100.
- 4) Значение поля Behavior меняем на Hard.
- Проделываем аналогичную процедуру с п.1 по п.2 для левой границы. На панели Details of "Sizing" в строке Туре выбираем Number of Divisions и устанавливаем значение 30.
- 6) Значение поля Behavior меняем на Hard.
- 7) Значение поля Bias Туре меняем на - --- , а значение поля Bias Factor устанавливаем равным 10.
- Проделываем те же операции, что и в п.5-7 для правой границы, с той лишь разницей, что значение поля Bias Type выбираем:
- 9) Поле этого в строке меню кликаем Generate Mesh. После всех выполненных сетка будет иметь вид:
- 10)В разделе статистика панели Details of "Mesh" можно видеть, что число элементов получилось 3000.

Рис. 2.10

2.4.2. Присвоение имен границам области

Левую границу области назовем Inlet, правую – Outlet, нижнюю – Axis, верхнюю Wall. Эти имена пригодятся на последующих шагах при построении модели с помощью программы Fluent.

- Выполнить клик правой кнопкой мыши по свободному полю, где нарисована область с построенной сеткой. Из строки Cursor Mode выбрать фильтр Edge . Подвести курсор к левой границе, когда она окрасится в зеленый цвет, выполнить левый клик мышкой, после этого выполнить правый клик мышкой. В появившемся контекстном меню выбрать Create Named Selection, рис. 2.11.
- Появится окно Selection Name, рис. 2.12, в которое следует ввести Inlet. Нажать ОК. Подобную операцию проделать со всеми границами, вводя соответствующие имена.

Рис. 2.11

Рис. 2.12

2.4.3. Сохранение, выход, обновление

- 1) Сохраните проект. File→Save project
- 2) Закройте окно Meshing. File→ Close Meshing.
- Перейдите в окно Workbench и обновите проект, нажав на кнопку Update Project, *У Update Project*, которая находится под строкой меню.
- 4) Окно проекта примет вид, рис. 2.13:

Fluid Flow (FLUENT)

Рис. 2.13

2.5. Запуск ANSYS FLUENT

- 1) Чтобы считать геометрию и сетку во FLUENT кликните правой кнопкой мыши по Setup и в контекстном меню выберите Refresh
- После чего, следует кликнуть на Update. В правой части ячейки Setup должен появиться знак вопроса, который означает, что процесс еще не завершен.
- 3) Дважды кликните на Setup. Загрузится FLUENT Launcher.
- 4) В разделе Options поставьте галочку рядом Double Precision
- 5) Нажмите на ОК. FLUENT будет запущен.
- 6) Проверяем информацию о разностной сетке Mesh→Info→Size.
- 7) Проверяем сетку на наличие ошибок Mesh→Check,

2.5.1. Внесение данных в решатель

- 1) Задаем осесимметричную геометрию области. В разделе General-Solver->2D Space выбираем Axisymmetric.
- Отключаем уравнение энергии: Problem Setup → Models→ Energy→Off.
- 3) Устанавливаем модель турбулентного течения: Problem Setup \rightarrow Models \rightarrow Viscous-Laminar \rightarrow Edit. Откроется окно Viscous Model, в котором выбираем значение k-epsilon (2 eqn), рис. 2.14.

- 4) В группе Near Wall Treatment выбираем модель неравновесных пристеночных функций: Enhanced Wall Function. В этом случае выбор пристеночных функций будет происходить в зависимости от того какова величина y₊ Будут использованы либо стандартные пристеночные функции (30<y₊<100), либо функции, соответствующие двухслойной модели (y₊<30).</p>
 - 5) Кликаем ОК.

2.5.2. Задание свойств жидкости

Свойства жидкости были указаны при постановке задачи.

- 4) Для создания жидкости с такими свойствами выполняем следующие действия: Problem Setup → Materials → Fluid → Create/Edit.
- 5) В появившемся окне устанавливаем плотность 1 кг/м³ и вязкость 2·10⁻⁵ кг/(м·сек).
- 6) Кликаем кнопку Change/Create, затем Close.

Viscous Model	x
Model Invisid Laminar Spalart-Allmaras (1 eqn) & k-onega (2 eqn) Transition K-M-onega (3 eqn) Transition K-M-onega (3 eqn) Transition SST (4 eqn) Reynolds Stress (5 eqn) Scale-Adaptive Simulation (SAS) k-epsilon Model @ Standard RNG Realizable Near-Wall Treatment Standard Wall Functions © Standard Wall Functions © Standard Wall Functions © Enhanced Wall Treatment User-Defined Wall Treatment Enhanced Wall Treatment Options Pressure Gradient Effects	Model Constants Cmu [0.09 C1-Epsilon [1.44 [2-Epsilon [1.92 [1.92 [TKE Prandtl Number [1 User-Defined Functions Turbulent Viscosity none Prandtl Numbers TKE Prandtl Number [none [TKE Prandtl Number [[[[[[[[[[[[[[[[[[[
OK	Cancel Help

Рис. 2.14

2.5.3. Задание граничных условий

По условию задачи необходимо задать условия на четырех границах.

- Задаем условия на входной границе: Problem Setup→Boundary Conditions→Zone (Inlet)→Edit, как показано на рис. 2.15. Задание скорости на входе 1 м/сек обеспечивает Re=10000.
- В разделе Turbulence в строке Specification Method выбираем значение Intensity and Hydraulic Diameter. Устанавливаем значение Turbulent Intensity равным 1%, а Hydraulic Diameter 0.2 м.

ſ	Velocity Inlet
	Zone Name
	inlet
	Momentum Thermal Radiation Species DPM Multiphase UDS
	Velocity Specification Method Magnitude, Normal to Boundary
	Reference Frame Absolute
	Velocity Magnitude (m/s)
	Supersonic/Initial Gauge Pressure (pascal) 0 constant
	Turbulence
	Specification Method Intensity and Hydraulic Diameter
	Turbulent Intensity (%)
	Hydraulic Diameter (m) 0.2
	OK Cancel Help

Рис. 2.15

- 3) Кликаем на ОК.
- На всех других границах устанавливаем те же значения, что и в предыдущей задаче.
- 5) После задания настроек, сохраните проект через строку меню File→Save Project.

2.5.4. Выбор разностной схемы

Для решения поставленной задачи мы будем использовать алгоритм SIMPLE метода Патанкара, с привлечением противопоточной схемы второго порядка точности для конвективных членов в уравнении сохранения импульса, для уравнения кинетической турбулентной энергии и уравнения диссипации турбулентной энергии.

В разделе Solution выбираем Solution Methods. Значения соответствующих полей должны быть выбраны так, как показано на рис. 2.16.

A:Fluid Flow (FLUENT)	FLUENT [axi, dp, pbns, ske] [FluentLM]
<u>File M</u> esh D <u>e</u> fine <u>S</u> o	lve <u>A</u> dapt S <u>u</u> rface <u>D</u> isplay <u>R</u> eport Para <u>l</u> lel <u>V</u> i
	⋸Ҿ€€∥®潗╟▾□▾
Problem Setup General Models Materials Phases Cell Zone Conditions Boundary Conditions Boundary Conditions Mesh Interfaces Dynamic Mesh Reference Values Solution Solution Methods Solution Controls Monitors Solution Controls Monitors Solution Controls Monitors Solution Controls Monitors Solution Controls Monitors Solution Activities Run Calculation Results Graphics and Animations Plots Reports	Solution Methods
1	I contract of the second se

Рис. 2.16

2.5.5. Настройка критерия сходимости

Мы будем итерировать каждое уравнение до тех пор, пока невязка не упадет ниже 10^{-6} . Для задания критерия невязки выполняем следующие действия.

- Solution → Monitors → Residuals, Statistic and Force Monitors → Residuals→ Edit.
- 2) В появившемся окне Residual Monitors изменяем значения Absolute Criteria, расположенные напротив строк Residual для continuity, x-velocity, y-velocity, k и epsilon на 10^{-6} рис. 2.17.
- 3) В разделе Options ставим галочки напротив Print to Console и Plot.
- 4) Жмем на ОК.

Residual Monitors					x
Options	Equations				
Print to Console	Residual	Monitor C	Check Convergence	Absolute Criteria	<u>^</u>
V Plot	continuity	V	V	1e-6	
Window	x-velocity	V	V	1e-6	E
Iterations to Plot	y-velocity	V	V	1e-6	
1000	k	\checkmark	V	1e-6	Ŧ
	Residual Values			Convergence C	iterion
Iterations to Store	Normalize		Iterations	absolute	_
	🔽 Scale				
	Compute Loca	al Scale			
OK Plot	Renormaliz	e Ca	ancel He	lp	

Рис. 2.17

2.5.6. Задание начальных условий

- 1) В разделе Solution выбираем Solution Initialization.
- 2) Меняем метод инициализации на Standard Initialization.
- 3) Кликаем на Compute from и выбираем inlet.

4) Кликаем Initialize.

2.5.7. Сохранение проекта

File \rightarrow Save Project

2.5.8. Выполнение расчетов

Задаем число итераций равное 700

- 1) Solution \rightarrow Run Calculation.
- 2) В строке Number Iterations задайте число итераций 700.
- 3) Нажмите кнопку Calculate.
- 4) Невязки на каждой итерации будут выводиться в окно консоли и строиться в виде зависимостей от номера итерации в графическом окне, рис. 2.18. Решение сойдется за 220 итераций. Здесь понадобилось больше итераций, чем при решении задачи о ламинарном течении, т.к. здесь была использована более мелкая разностная сетка.

Рис. 2.18

2.6. Обработка результатов расчета

Обработаем результаты расчетов с помощью средств встроенных во FLUENT

2.6.1. Расчет местного коэффициента трения

В примере о ламинарном течении в трубе мы показывали, как можно строить распределения каких либо параметров вдоль трубы или поперек трубы. По умолчанию FLUENT содержит определенный (стандартный) набор параметров, распределение которых можно посмотреть, например, давление, скорость, сдвиговое напряжение на стенке трубы и т.д. Другой набор параметров (дополнительный) требуется подключать. Например, если мы хотим вывести распределение местного коэффициента трения на поверхности трубы, то через меню выполняем следующие действия:

- 1) File→Data File Quantities, как показано на рис. 2.19. Откроется окно Data File Quantities.
- В разделе Additional Quantities этого окна выбираем Skin Friction Coefficient, рис. 2.20.
- 3) Кликаем ОК.

•	A:Fluid Flo	ow (FLUE	NT) FLU	ENT [a
File) Mesh	Define	Solve	Adap
	Refresh	Input Da	ta	
	Save Pr	oject		
	Read			•
	Write			•
	Import			•
	Export			+
	Solution	n Files		
	Interpo	late		
	EM Ma	pping		•
	FSI Map	pping		•
	Save Pi	cture		
	Data Fil	e Quantit	ies	
	Close F	LUENT		

Рис. 2.19

Data File Quantities			x
Many quantities are available for postpro data file. To include additional quantities applications, select them below.	cessii in the	ng in external applications through the data file for postprocessing in externa	standard al
Standard Quantities		Additional Quantities	
Pressure X Velocity Y Velocity Mass Flux Body Force Wall Velocity Original Wall Velocity Wall Shear Mach Number Boundary Heat Flux Boundary Heat F	E	Turbulent Viscosity Effective Viscosity Turbulent Viscosity Ratio Wall Ystar Wall Yplus Turbulent Reynolds Number (Re_y) Molecular Viscosity Wall Shear Stress Radial-Wall Shear Stress Radial-Wall Shear Stress Skin Friction Coefficient Cell Partition Cell Partition Cell Zone Type Cell Zone Type Cell Zone Index Partition Neighbors Cell Weight X-Coordinate Axial Coordinate Radial Coordinate Radial Coordinate Fare Area Magnitude <	
ОК	Ca	Incel Help	

Рис. 2.20

Теперь коэффициент поверхностного трения будет доступен в разделе Results

Для построения этого параметра вдоль стенки трубы выполним действия:

- 1) Results \rightarrow Plots \rightarrow XYPlot \rightarrow SetUp
- 2) В качестве Y Axis Function выбираем Wall Fluxes и Skin Friction Coefficient, рис.21.
- 3) Остальные настройки показаны на рис. 2.21.
- 4) Жмем кнопку Plot. В графическом окне, рис. 2.22, появится распределение местного коэффициента трения вдоль стенки трубы.

Solution XY Plot		x
Options Option Node Values Position on X Axis Position on Y Axis Write to File Order Points File Data	Plot Direction X 1 Y 0 Z 0	Y Axis Function Wall Fluxes Skin Friction Coefficient X Axis Function Direction Vector Surfaces axis inlet interior-surface_body outet Wall New Surface ▼
Plot	Axes	Curves Close Help

Рис. 2.21

Рис. 2.22

Коэффициент сопротивления по всей боковой поверхности можно определить двумя способами.

Первый способ: Найти средне интегральное значение от местного коэффициента трения по боковой поверхности трубы.

- 1) Results \rightarrow Reports \rightarrow Surface Integrals \rightarrow SetUp
- В появившемся окне Surface Integrals в разделе Report Type выбрать Area–Weighted Average, в разделе Field Variable выбрать Wall Fluxes и Skin Friction Coefficient, в разделе Surfaces выбрать wall.
- Нажать кнопку Compute. В окно консоли будет выведено число 0.0087826382.

Второй способ: Используя возможности раздела Force.

- 1) Results \rightarrow Reports \rightarrow Force \rightarrow SetUp.
- В появившемся окне Force Reports в разделе Options выбрать Forces, в разделе Wall Zones выбрать wall.
- 3) Нажать Print.
- В окно консоли будет выведена информация о силах, действующих на боковую поверхность канала, и коэффициентах. Смотрим число, стоящее под coefficients и Viscous: 0.0087826389.

2.6.2. Контроль и проверка решения

Для проверки выполнения интегральных законов сохранения (сохранение массы и импульса) можно поступить аналогично тому, как было описано в задаче о ламинарном течении в трубе.

Сравнение можно провести и с имеющимися экспериментальными данными по коэффициенту сопротивления λ для трубы, который определяется из формулы:

$$\lambda = \frac{\Delta P}{\frac{1}{2} \rho u_{av}^2} \frac{D}{L},$$

где ΔP – перепад давления вдоль трубы.

Коэффициент сопротивления λ связан с коэффициентом трения C_D зависимостью:

$$\lambda = 4C_{D}$$

Известна формула Г. Блазиуса для коэффициента сопротивления турбулентному течению в гладких трубах с поперечным сечением

круглой формы, которая справедлива для чисел Re от $4\cdot 10^3$ до 10^5 , где Re $= \rho u_{av} D/\mu$:

$$\lambda = \frac{0.3164}{\operatorname{Re}^{0.25}}.$$

Для чисел Re>10⁵, более точной является экспериментальная формула Никурадзе

$$\lambda = 0.0032 + \frac{0.221}{\mathrm{Re}^{0.237}}.$$

Тогда касательное напряжение на боковой стенке трубы будет вычисляться по формуле:

$$au_w = rac{\lambda}{8}
ho u_{av}^2 \, .$$

Для Re=10⁴ и исходных данных ρ =1 кг/м³, u_{cp} =1 м/сек, получаем величину касательного напряжения 0.003955 Па.

Определим эту величину с помощью FLUENTa. Выполним действия:

- 1) Results \rightarrow Reports \rightarrow Surface Integrals \rightarrow SetUp
- В появившемся окне Surface Integrals в разделе Report Type выбрать Area–Weighted Average, в разделе Field Variable выбрать Wall Fluxes и Wall Shear Stress, в разделе Surfaces выбрать wall.
- Нажать кнопку Compute. В окно консоли будет выведено число 0.0043913191

Как видим, расхождение между экспериментальным значением и расчетным составляет 11%.

Другой способ проверки – нахождение отношения максимальной скорости жидкости (на оси) u_m к средней скорости u_{cp} . Известно, что профиль скорости развитого турбулентного течения жидкости в трубе для чисел Re от 10^4 до 10^6 с достаточной степенью точности аппроксимируется следующей формулой:

$$u(y) = u_{_m} \left(1 - rac{y}{R}
ight)^{\!\!1/7},$$

где *R* – радиус трубы.

Тогда выражение для средней скорости имеет вид:

$$u_{\mathbb{A}} = \frac{2}{R^2} \int_0^n u(y) y dy = \frac{49}{60} u_m$$

Согласно проведенным расчетам отношение u_m/u_{av} составляет 1.195, что на 2.4% меньше «точного» значения 60/49=1.224.

Результаты расчетов также можно проверить, используя тот факт, что в теории турбулентного движения профиль скорости жидкости вблизи стенки (в турбулентном погранслое) является логарифмическим. Для определения местного коэффициента трения $c_{_D} = \tau_w / (0.5 \rho u_{_{\rm A}}^2)$ имеет место уравнение:

$$\sqrt{rac{2}{c_{_D}}} = 2.5 \ln \left(rac{1}{2} \operatorname{Re} \sqrt{rac{c_{_D}}{2}}
ight) + 1.75$$
 .

Решение этого нелинейного уравнения для $Re=10^4$ дает величину $c_D = 0.007719$, которая меньше рассчитанного значения 0.0087826389 на 13.8%.

Логарифмический профиль скоростей в турбулентном погранслое позволяет определить отношение осевой скорости к средней скорости потока u_m/u_{av} :

$$\frac{u_{_{m}}}{u_{_{av}}} = \frac{2.5 \ln\left(\frac{1}{2} \operatorname{Re} \sqrt{\frac{c_{_{D}}}{2}}\right) + 5.5}{2.5 \ln\left(\frac{1}{2} \operatorname{Re} \sqrt{\frac{c_{_{D}}}{2}}\right) + 1.75},$$

которое равно 1.233, что на 3.1% выше полученного из расчетов.

2.7. Задание для самостоятельной работы

Решите задачу о развитии турбулентного течения несжимаемой жидкости в трубе длиной 8 метров, диаметром 0.2 метра. Плотность

жидкости 1 кг/м³, вязкость жидкости 0.00002 Па·с, скорость жидкости на входе в трубу 1 м/с.

Для решения используйте FLUENT, схему второго порядка аппроксимации для уравнения сохранения импульса. Решение требуется получить на разностных сетках 100×15 , 100×30 , 100×60 (осевое разбиение × радиальное разбиение).

Для получения правильного решения задачи о турбулентном течении в трубе, необходимо помнить, что первый пристенный узел разностной сетки должен лежать либо в вязком подслое, либо находится в области, где имеет место логарифмический профиль скоростей. Т.е. должно выполняться какое-либо из двух неравенств: $u^+ < 5$. либо

$$y^+ > 70$$
, где $y^+ = \sqrt{rac{ au_w}{
ho}} rac{y}{
u};
u$ – кинематическая вязкость жидкости,

м²/с. Для определения величины y^+ необходимо выполнить следующие действия: Display—Contours. Далее в окне Contours of выбрать поле Turbulence и поле Wall YPlus. Далее кликнуть на кнопку Compute.

В окне Мах появится значение величины y^+ . Убедитесь, что оно меньше 5.

1. Постройте профили осевой скорости на выходе из трубы, полученные на трех различных сетках. Также постройте профиль скорости, полученный из решения задачи о развитом течении несжимаемой жидкости в трубе постоянного сечения. На одном графике должно быть 4 кривых. Осевая скорость должна быть отложена на оси абсцисс, а радиальная координата – по оси ординат.

2. Рассчитайте сдвиговое напряжение τ_w на стенке в области полностью развитого течения на трех сетках. Рассчитайте это значение из

теории полностью развитого течения жидкости в трубе. Для каждой сетки рассчитайте ошибку относительно аналитического решения. Поместите результаты расчетов в таблицу:

Сетка	$ au_{_{xy}}$	% ошибка

3. На выходе из трубы, где течение полностью развитое, ошибку в осевой скорости на оси симметрии можно определить как

$$arepsilon = rac{\left|u_{_{cale}} - u_{_{exzet}}
ight|}{u_{_{exzet}}}$$

Ожидается, что ошибка будет иметь вид: $\varepsilon = K\Delta r^p$, Δr – размер ячейки в радиальном направлении, K и p – постоянные, значение которых будет зависеть от выбранной разностной схемы. Используя метод наименьших квадратов, предварительно прологарифмировав зависимость $\ln \varepsilon = \ln K + p \cdot \ln \Delta r$, найти постоянные K и p.

4. Посмотрите, как изменится значение p при смене разностной схемы с "second-order upwind" на "first-order upwind". На графике должно быть изображено четыре кривые. По две для каждой разностной схемы. Сравните значения p и дайте объяснение полученным результатам. Следует помнить, что схемы второго и первого порядка точности применяются только для инерционных членов уравнения сохранения импульса, а дискретизация вязких членов всегда имеет второй порядок точности.

3. ЗАДАЧА О КОСОМ СКАЧКЕ УПЛОТНЕНИЯ

3.1. Описание задачи

Рассматривается задача о течении сжимаемого газа, набегающего со сверхзвуковой скоростью на бесконечный клин с углом при вершине 20. На рис. 3.1 приведена схема картины течения, ось *x* соответствует линии симметрии клина. Начальная скорость потока *U* больше скорости звука, U > c. В зависимости от величины угла θ и числа Маха, соответствующего начальной скорости потока, возможно возникновение косого скачка уплотнения с углом между линией скачка и направлением набегающего потока β .

Рис. 3.1

Будем рассматривать течение газа в области со следующими размерами: AB = 10 м, BC = 5 м, θ = 30°, AA₁ = 10 м (см. рис. 3.2). Считаем, что на клин (BC) набегает поток воздуха с плотностью ρ = 1.225 кг/м³, вязкостью μ = 2·10⁻⁵ Па·с, давлением p = 101325 Па. Скорость набегающего потока характеризуется числом Maxa M = 3.

Рис. 3.2

Решение задачи выполним, используя FLUENT с помощью ANSYS Workbench.

3.2. Создание проекта в ANSYS Workbench

1) Запустите ANSYS Workbench: Start> All Programs> ANSYS 14.0> Workbench 14.0. Окно Workbench показано на рис. 3.3.

Рис. 3.3

В левой стороне окна Workbench будет находиться панель инструментов, заполненная системами для решения различных физических задач. Посредине будет организован создаваемый проект. В окне Analysis Systems дважды кликните левой клавишей мыши по строке Fluid Flow (FLUENT). После этого окно Workbench будет выглядеть как на рис. 3.4.

Рис. 3.4

2) Coxpaните проект под именем Angle_shock_wave.

3) В окне Project Schematic (окна Workbench) кликните правой кнопкой мышки на Geometry и выберите Properties, как показано на

рис. 3.5. В правой части окна Workbench появится окно Property of Schematic.

4) В окне Property of Schematic, в разделе Advance Geometry Options измените значение Analysis Туре на 2D, поскольку далее мы будем использовать двумерную модель течения газа.

Рис. 3.5

5) В окне Project Schematic дважды кликните левой клавишей мыши на Geometry чтобы начать подготовку построения геометрической области. При этом произойдет запуск программы ANSYS Design Modeler. Вам будет предложено выбрать желаемую единицу измерения длины, рис. 3.6. Выберите метры и нажмите OK.

Рис. 3.6

3.2.1. Создание эскиза

1) В панели Graphics в нижнем правом углу кликните левой кнопкой мыши по оси +Z. После этого плоскость XY совпадет с плоскостью экрана. (Ось +Z будет смотреть на вас), рис. 3.7.

Чтобы приблизить или отдалить изображение на панели Graphics, следует кликнуть левой кнопкой мыши по панели и, вращая колесико мышки, можно добиться желаемого результата. Если возникает необходимость переместить изображение влево, вправо, вверх, вниз, то следует кликнуть правой кнопкой мыши и в контекстном меню выполнить следующую последовательность действий: Cursor Mode—Pan.

После этого курсор примет форму ••. Кликнув по панели Graphics левой кнопкой мыши и удерживая ее, можно перемещать изображение в любом направлении.

Рис. 3.7

2) Эскиз будем создавать в плоскости ХҮ. Для этого на панели Tree Outline кликните по XYPlane (рис. 3.7). В левом нижнем углу панели Tree Outline выберите закладку Sketching. Вместо панели Tree Outline появится панель Sketching Toolboxes – панель инструментальных средств для построения эскиза, рис. 3.8. По умолчанию открывается набор инструментов Draw.

3) Перед построением области покажем координатную сетку. Для этого на панели Sketching Toolboxes кликните по табулятору Settings, находящемуся внизу панели, затем – по инструменту Grid и напротив Show in 2D установите галочку, рис. 3.9. После этого на панели Graphics будет показана координатная сетка, расстояние между координатными линиями по умолчанию равно 5 м. Перейдите в набор инструментов Draw.

Sketching Toolboxes	4
Draw	
🔨 Line	
🖒 Tangent Line	
🖒 Line by 2 Tangents	
∧ Polyline	
🕞 Polygon	
🗖 Rectangle	
🟳 Rectangle by 3 Points	
🔗 Oval	
🕓 Circle	
付 Circle by 3 Tangents	
- Arc by Tangent	
🗥 Arc by 3 Points	
🙃 Arc by Center	
🕒 Ellipse	
🧈 Spline	
* Construction Point	
🕸 Construction Point at Intersection	
Modify	
Dimensions	
Constraints	
Settings	
Sketching Modeling	

Рис. 3.8

Sketching Too	olboxes		
	Draw		
	Modify		
	Dimensions		
	Constraints		
	Settings		
Grid	Show in 2D	🔽 Snap:	Γ
😝 Major Gr	rid Spacing		
🗰 Minor-St	teps per Major		
Sketching	Modeling		_

Рис. 3.9

4) На панели Draw в Sketching Toolboxes выберите Line и постройте 5 линий, ограничивающих область расчета, рис. 3.10. Для построения первой линии кликните левой кнопкой мыши в начале координат, затем проведите прямую в направлении оси *x*. Вторую линию постройте из конца первой линии под углом к оси *x*. Из конца второй линии строится третья линия и так далее до получения пятиугольника, качественно соответствующего рис. 3.2. Если курсор вести вдоль оси *x*, то рядом с курсором появляется буква H, вдоль оси *y* – буква V, если курсор поместить в начало координат, то рядом с ним появляется буква P.

5) Нанесем размеры на пятиугольник. На панели Sketching Toolboxes выбираем табулятор Dimensions -> Generals. На панели Graphics подводя курсор к левой стороне пятиугольника, нажимая и удерживая левую кнопку мыши, отводим курсор влево. При этом появятся линии разметки. Такие же действия проделываем с нижней стороной и с наклонной стороной пятиугольника, только курсор отводим вниз. Для нанесения угла выбираем в табуляторе Dimensions опцию Angle, выделяем наклонную и нижнюю горизонтальную линии и ведем курсор вверх до появления разметки. На панели Details View, которая находится под панелью Sketching Toolboxes, в группе Dimensions: 4 устанавливаем размеры пятиугольника соответствующие входным данным задачи. Для того, чтобы вместо названий линий нанести на рисунок размеры фигуры выбираем на панели Sketching Toolboxes вкладку Dimensions, далее выбираем опцию Display и устанавливаем флажок на поле Value. В результате мы получили фигуру с нанесенными размерами, представленную на рис. 3.10.

Рис. 3.10

3.2.2. Создание поверхности

1) Для создания поверхностей выбираем в меню Concept, а затем Surface From Sketches, как показано на рис. 3.11.

Рис. 3.11

Рис. 3.12

2) На панели Tree Outline, выберите Sketch1, затем на панели Details View, напротив Thickness (>=0), выберите толщину 0.1m. Напротив Base Objects кликните Apply. Окончательно кликните Generate, чтобы сгенерировать поверхность, рис. 3.12.

3) На этом можно закрыть Design Modeler и вернуться в Workbench Project Schematic для построения разностной сетки.

3.2.3. Построение сетки

Будем решать задачу на равномерной сетке с фиксированным размером ячеек. Заходим в меню Mesh (рис. 3.13)

Рис. 3.13

1) Генерируем сетку: Generate Mesh (рис. 3.14).

Рис. 3.14

2) Применяем стиль Mapped Face Meshing. Для этого на панели Outline кликаем Mesh. Затем на панели инструментов выполняют последовательность Mesh Control \rightarrow Mapped Face Meshing, рис. 3.15.

Рис. 3.15

3) Кликаем по геометрической области, после чего она окрашивается в зеленый цвет. После этого кликаем Apply на панели Details of "Mapped Face Meshing", рис. 3.16.

Рис. 3.16

3.2.4. Задание узлов сетки на границах

1) Сначала зададим число разбиений вдоль левой вертикальной границы (линия AA₁, рис. 3.2). Для этого кликаем Mesh Control > Sizing (рис. 3.17).

Рис. 3.17

Рис. 3.18

2) Кликаем по фильтру Edge 1. Затем подводим курсор к линии AA₁, рис.3.2 (она при этом окрасится в зеленый цвет), нажимаем левую кнопку мыши. После этого кликаем Apply на панели Details of "Sizing" (рис. 3.18).

3) На панели Details of "Sizing" в поле Туре выбираем Element Size и устанавливаем значение 0.2 (рис. 3.19)

Details of "Sizing" -	Sizina				
Suppressed		No			
Туре		Element Size			
Element Size		0.2			
Behavior		Sc	Soft		
Selection Informati	on			<u>ዋ</u>	
Coordinate System: Global Co		Co	ordinate System	- 🖉	
Entity	Length		Centroid	Cent	
	(m)		X(m)	t)Y	
1 Edge. Summarv	10.		0.	5	
4 III				- F	

Рис. 3.19

4) Значение поля Behavior оставляем Soft (рис. 3.19).

5) Проделываем аналогичную процедуру с п.1 по п.4 для других границ.

6) После этого в строке меню кликаем Generate Mesh (рис. 3.20). Чтобы увидеть созданную сетку следует кликнуть на Mesh панели Outline. В разделе статистика панели Details of "Mesh" можно видеть, что число элементов получилось 3256.

Рис. 3.20

7) Можно поступить по-другому и задать на границах фиксированное количество разбиений. Для этого в пункте 3 в поле Туре нужно выбрать Number of Division. Построим сетку, задав значения разбиений согласно геометрическим пропорциям области расчета. Так, для линии AA₁ зададим 50 разбиений, линии BC – 25 разбиений, линии AB – 50, тогда линии A₁C₁ соответствует 75 разбиений, линии CC₁ – 25. Количество элементов равно 2625.

8) Будем решать задачу на сетке, содержащей 2625 элементов.

3.2.5. Присвоение имен границам области

Левую границу области (линия AA₁, рис. 3.2) назовем Inlet, правую (линия CC₁, рис. 3.2) – Outlet, нижнюю прямую (линия AB, рис. 3.2) – Symmetry, нижнюю линию, направленную под углом (линия BC, рис. 3.2) – Wall_Conus, верхнюю (линия A₁C₁, рис. 3.2) Wall. Эти имена пригодятся на последующих шагах при построении модели с помощью программы Fluent.

2) Выполните клик правой кнопкой мыши по свободному полю, где нарисована область с построенной сеткой. Из строки Cursor Mode выберите фильтр Edge **1**. Подведите курсор к левой границе, когда она окрасится в зеленый цвет, выполните левый клик мышкой, после этого выполните правый клик мышкой. В появившемся контекстном меню выберите Create Named Selection, рис. 3.21.

 Появится окно Selection Name, рис. 3.22, в которое следует ввести Inlet. Нажать ОК. Подобную операцию проделать со всеми границами, вводя соответствующие имена.

Рис. 3.21

Рис. 3.22
3.2.6. Сохранение, выход, обновление

1) Сохраните проект. File→Save project

2) Закройте окно Meshing. File→ Close Meshing.

3) Перейдите в окно Workbench и обновите проект, нажав на кноп-

ку Update Project, 🦻 Update Project, которая находится под строкой меню.

4) Окно проекта примет вид, рис. 3.23:

Fluid Flow (FLUENT)

Рис. 3.23

3.3. **Запуск ANSYS FLUENT**

1) Чтобы считать геометрию и сетку во FLUENT кликните правой кнопкой мыши по Setup и в контекстном меню выберите Refresh

 После этого следует кликнуть на Update. В правой части ячейки Setup должен появиться знак вопроса, который означает, что процесс еще не завершен. Эти же действия можно выполнить с помощи панели инструментов, находящейся под строкой меню.

3) Дважды кликните на Setup. Загрузится FLUENT Launcher.

4) В разделе Options поставьте галочку рядом Double Precision.

5) Нажмите на ОК. FLUENT будет запущен.

6) Проверяем информацию о разностной сетке Mesh→Info→Size.

7) Проверяем сетку на наличие ошибок Mesh -> Check.

3.3.1. Установки Problem Setup

1) Для получения решения выберем установки, соответствующие нашей задаче. Рассмотрим по пунктам, что мы задаем в разделе Problem Setup (рис. 3.24).

2) Выбираем тип решателя. В разделе General ставим галочку возле Density-Based Type.

3) Выбираем модель, в рамках которой будем проводить решение. Включаем уравнение энергии: Problem Setup \rightarrow Models \rightarrow Energy \rightarrow On.

4) Устанавливаем модель невязкого течения: Problem Setup \rightarrow Models \rightarrow Viscous \rightarrow Inviscid \rightarrow Ok.

5) Получившаяся окно Models показано на рис. 3.25

6) Задаем свойства газа. В разделе Materials выбираем Fluid – air (стоит по умолчанию) и задаем свойства воздуха. Для этого нажимаем Create/Edit, в поле Density задаем идеальный газ – ideal gas, в поле Cp (теплоемкость) выбираем constant со значением 1006.43 Дж/кг/К, в поле Molecular Weight (Молярная масса) выбираем constant со значением 28.966 кг/кмоль. Получившиеся свойства газа показаны на рис. 3.26. Нажимаем Change/create и закрываем окно Create/Edit Materials.

7) Задаем граничные условия. В поле Boundary Condition выбираем для границ *inlet*, *outlet*, *wall* тип (Туре) Pressure-Far-Field. Для каждого из полей кликаем edit и выставляем свойства. Задаем Gauge Pressure – 101325, Mach Number – 3, X-Component of Flow Direction – 1, Y-Component of Flow Direction – 0. Во вкладке Thermal задаем температуру газа 300 К. Для границы *wall_conus* выставляем тип wall, для границы *symmetry* ставим тип symmetry.

8) Для проведения расчета задаем масштабные величины. Для этого во вкладке Reference Values выставляем значения, показанные на рис. 3.27.

Create/Edit Materials	the second se	x
Name air	Material Type	Order Materials by
Chemical Formula	FLUENT Fluid Materials	FLUENT Database
Properties	Mixture none v	User-Defined Database
Density (kg/m3)	ideal-gas	
Cp (Specific Heat) (j/kg-k)	constant Edit 1006.43	
Molecular Weight (kg/kgmol)	constant Edit Edit	
	•	
,	Change/Create Delete Close Help	

Рис. 3.26

Reference Values			
Compute from			
	•		
Reference Values			
Area (m2)	1		
Density (kg/m3)	1.225		
Depth (m)	1		
Enthalpy (j/kg)	844043.4		
Length (m)	1		
Pressure (pascal)	0		
Temperature (k)	300		
Velocity (m/s)	1		
Ratio of Specific Heats	1.4		

Рис. 3.27

3.3.2. Установки Solution

Рассмотрим теперь установки решателя (рис. 3.28), для которых будем проводить решение задачи. Для решения поставленной задачи будем использовать алгоритм SIMPLE метода Патанкара, с привлечением противопоточной схемы второго порядка точности для конвективных членов.

Solution

Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation

Рис. 3.28

1) Выберем метод расчета. Во вкладке Solution Method задаем явный метод (Formulation-Implicit) и второй порядок точности (Flow-Second Order Upwind).

2) Во вкладке Solution Controls задаем значение числа Куранта, равное 5.

3) Во вкладке Monitors кликаем по Residuals-Print, Plot, откроется окно, в котором мы можем регулировать величину «невязок», задаем во всех полях значение 10^{-6} (см. рис. 3.29).

Residual Monitors		-	-	+	x
Options	Equations				
Print to Console	Residual	Monitor C	heck Convergence	Absolute Criteria	^
V Plot	continuity	\checkmark	$\overline{\mathbf{v}}$	1e-06	
Window	x-velocity	V	$\overline{\mathbf{v}}$	1e-06	
Iterations to Plot	y-velocity	V	\bigtriangledown	1e-06	
1000	energy	V	\mathbf{V}	1e-06	Ŧ
Residual Values Convergence Criterion				riterion	
Iterations to Store	Normalize		Iterations	absolute	
	🔽 Scale				
Compute Local Scale					
OK Plot Renormalize Cancel Help					

Рис. 3.29

4) Во вкладке Solution Initialization задаем начальные данные. Выбираем Initialization Method – Standard Initialization. Во вкладке Compute from выбираем поле inlet и жмем Initialize.

5) Во вкладке Calculation Activities можно задать автосохранение расчетов (Autosave), которое имеет смысл делать при проведении длительных расчетов, и при аварийной остановке можно возобновлять расчет с последней точки сохранения. Мы не будем устанавливать автосохранение, так как расчеты не предполагаются долгими. 6) Во вкладке Run Calculatoion выставляем число итераций - 10000. Если величина невязок будет меньше значения 10^{-6} , то расчет прекратится автоматически. Иначе, расчет будет идти до тех пор, пока не пройдет 10000 итераций. Перед началом расчетов сохраняем проект – Save Project. Кликаем Calculate и смотрим на окно результатов. В окне результатов выдаются графики, соответствующие величинам «невязок».

3.4. Результаты расчета

Величина «невязок» в зависимости от номера итерации представлена на рис. 3.30. Решение сошлось за 167 итераций.

Рис. 3.30

Ниже представлены распределения скорости (рис. 3.31), давления (рис. 3.32) и температуры газа (рис. 3.33), получившиеся при расчете. Результаты расчета соответствуют косой ударной волне.

Рис. 3.31. Распределение скорости газа

Рис. 3.32. Распределение давления

Рис. 3.33. Распределение температуры газа

Для того, чтобы как можно точнее рассчитать область течения в окрестности ударной волны, загустим разностную сетку в этой области.

1) Сначала покажем исходную сетку. Для этого выберем вкладку Results – Graphics and Animations– Mesh, в появившемся окне отметим все поверхности (Surfaces) и нажмем кнопку Display.

2) Приступим к загущению сетки. Выберем вкладку Adapt – Gradient Adaption. На экране появится окно, показанное на рис. 3.34.

3) В столбце Options отмечаем галочками пункты Refine и Coarsen. В столбце Method помечаем Gradient. Выбираем Gradients of Pressure – Static Pressure и нажимаем кнопку Compute. На экране отобразятся минимальное (min) и максимальное (max) значения градиента статического давления. Переходной области соответствует область резкого изменения градиента давления.

4) Откроем вкладку Results – Graphics and Animations–Contours. Выберем Contours of Adaption – Existing Value и нажмем кнопку Compute. В графах min и max автоматически появятся значения, вычисленные в предыдущем пункте. Снимем галочку с вкладки Node Value и нажмем кнопку Display. На экране отобразится картина без размывания. Вы можете видеть, что зона резкого изменения градиента давления показана «квадратиками».

Gradient Adaption				<u> </u>
Options © Refine © Coarsen © Normalize per Zone Contours Manage Controls	Method Curvature Gradient Iso-Value Normalization Standard Scale Normalize	Gradients of Pressure Static Pressure Min 0 Coarsen Threshold 0	Max 0 Refine Threshold 10000	-
Adapt	Dynamic Dynamic Interval 100 Mark	Compute Apply	Close Help	

Рис. 3.34

5) Вернемся в окошко Gradient Adaption из пункта 3. В строке Refine Threshold введем значение 10000 и нажмем кнопку Mark. Это действие дает возможность отметить все точки, где градиент статического давления больше 10000. Эти точки задают границу переходной области. Количество точек можно увидеть в окне консоли. Далее, в окне Gradient Adaption кликаем кнопку Adapt, в окне Results – Graphics and Animations– Mesh строим получившуюся сетку. На рис. 3.35 видно, что сетка изменила свой вид и имеет загущение в окрестности косой ударной волны.

6) Проводим расчет задачи на новой сетке, для этого повторяем пункты 4 – 6 предыдущего раздела «Установки Solution». Скорость сходимости решения отличается от скорости сходимости для равномерной сетки, что объясняется резким изломом сетки. Ограничим расчет 200 итерациями и посмотрим на полученные результаты. Построив поле давления (рис. 3.36), можно убедиться в том, что область перехода стала более узкой.

Рис. 3.35

Рис. 3.36

3.5. Задание для самостоятельной работы

Решите задачу о течении газа, набегающего со сверхзвуковой скоростью на бесконечный клин с углом при вершине 20. Характеристики области расчета и значения углов даны в таблице. Клин обтекает поток воздуха со следующими параметрами: $\rho = 1.225 \text{ кг/m}^3$, $\mu = 2 \cdot 10^5 \text{ Га} \cdot \text{с.}$ Статическое давление набегающего потока P = 101325 Па, температура T = 300 K, число Маха M = 3.

Решение проведите на двух сетках с размером ячейки 0.2 и 0.1. Сравните полученные решения. Проведите адаптацию (измельчение) каждой сетки в окрестности косой ударной волны.

N⁰	θ, град	<i>АВ</i> , м	<i>ВС</i> , м	<i>АА</i> ₁ , м
1	40	15	7	10
2	30	15	7	10
3	20	15	7	10
4	40	14	5	10
5	35	14	5	10
6	25	14	5	10
7	40	14	5	12
8	42	14	5	12
9	38	14	5	12

Сравните полученные численные решения с точным решением этой задачи. Для получения точного решения выполните следующие расчеты:

 Определите угол наклона косой ударной волны к направлению набегающего потока β, который находится из следующего нелинейного уравнения:

$$\operatorname{ctg}(\theta) = \operatorname{tg}(\beta) \Biggl[rac{\left(\gamma + 1
ight) M^2}{2\left(M^2 \sin^2(\beta) - 1
ight)} - 1 \Biggr]$$

где γ – отношение теплоемкостей, c_p/c_v ; M – число Маха набегающего потока; В качестве решения этого уравнения следует брать первый положительный корень.

2) Найдите число Маха потока за косой ударной волной M_1 из формулы:

$$M_{1}^{2}\sin^{2}(\beta - \theta) = \frac{(\gamma - 1)M^{2}\sin^{2}(\beta) + 2}{2\gamma M^{2}\sin^{2}(\beta) - (\gamma - 1)}$$

3) Найдите статическое давление воздуха за косой ударной волной *P*₁ из формулы:

$$\frac{P_1}{P} = \frac{2\gamma M^2 \sin^2(\beta) - (\gamma - 1)}{\gamma + 1}$$

4) Найдите температуру воздуха за косой ударной волной T_1 из формулы:

$$\frac{T_{_{1}}}{T} = \frac{P_{_{1}}}{P} \Biggl[\frac{(\gamma - 1)M^{2} \sin^{2}(\beta) + 2}{(\gamma + 1)M^{2} \sin^{2}(\beta)} \Biggr]$$

5) Сравните результаты для M_1 , P_1 , T_1 с результатами, полученными с помощью Ansys-Fluent.

ЛИТЕРАТУРА

- Лойцянский Л.Г. Механика жидкости и газа : учеб. для вузов. – М. : Дрофа, 2003. – 840 с.
- Абрамович Г.Н. Прикладная газовая динамика. М. : Наука, 1976. – 888 с.
- Ansys Fluent Tutorial Guide / ANSYS Inc. Southpointe, 2011. 1146 p.
- FLUENT Laminar Pipe Flow [Электронный ресурс]. URL: https://confluence.cornell.edu/display/SIMULATION/FLUENT+-+Laminar+Pipe+Flow (дата обращения: 18.02.2016).
- FLUENT Turbulent Pipe Flow [Электронный ресурс]. URL: https://confluence.cornell.edu/display/SIMULATION/FLUENT+-+Turbulent+Pipe+Flow (дата обращения: 18.02.2016)
- FLUENT Supersonic Flow Over a Wedge [Электронный реcypc]. – URL: https://confluence.cornell.edu/display/ SIMULATION/FLUENT+-+Supersonic+Flow+Over+a+Wedge (дата обращения: 18.02.2016).

Учебное издание

Леонид Леонидович Миньков Ксения Михайловна Моисеева

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧ ГИДРОДИНАМИКИ С ПОМОЩЬЮ ВЫЧИСЛИТЕЛЬНОГО ПАКЕТА ANSYS FLUENT

Учебное пособие

Опубликовано в авторской редакции

Издательство "STT" Россия, 634028, г. Томск, проспект Ленина, 15Б–1 Тел.: (3822)421-455 E-mail: stt@sttonline.com

Усл. печ. лист 7,2. Уч.-изд. л. 1,79. Бумага для офсетной техники. Гарнитура Times, Подписано к печати 02.07.2017 г. Формат 60х84/16 Тираж 100 экз. Заказ № 594.